基于野外Vis-NIR光谱的土壤有机质预测与制图  被引量:21

Estimation and Mapping of Soil Organic Matter Based on Vis-NIR Reflectance Spectroscopy

在线阅读下载全文

作  者:郭燕[1] 纪文君[1] 吴宏海[2] 史舟[1,3] 

机构地区:[1]浙江大学农业遥感与信息技术应用研究所,浙江杭州310058 [2]浙江大学地球科学系,浙江杭州310027 [3]浙江大学唐仲英传感材料及应用研究中心,浙江杭州310058

出  处:《光谱学与光谱分析》2013年第4期1135-1140,共6页Spectroscopy and Spectral Analysis

基  金:国家自然科学基金项目(41271234);教育部新世纪优秀人才支持计划(NCET-10-0694);国家"十二五"科技支撑课题(2011BAD21B04);浙江大学唐氏基金项目资助

摘  要:利用野外实时快速获取的土壤光谱进行土壤有机质(SOM)预测与制图是精确农业与土壤遥感制图的必然需要,利用ASD FieldSpec Pro FR野外型光谱仪实时快速获取的光谱数据,去除噪声较大的边缘波段后,进行倒数的对数转换(Log(1/R))为吸收光谱。在分析吸收光谱和光谱指数与SOM关系的基础上,采用偏最小二乘回归法进行SOM的建模预测并借助地统计学方法进行SOM空间变异制图研究。结果表明,建模效果好的指标分别为特征波段(R2=0.91,RPD=3.28),归一化光谱指数(R2=0.90,RPD=3.08),特征波段与3个光谱指数组合(R2=0.87,RPD=2.67),全波段(R2=0.95,RPD=4.36)。光谱指标的克里格制图与实测SOM制图表现出相同的空间变异趋势,不同的指标均达到了较好的预测效果。Visible-near infrared(Vis-NIR) reflectance spectroscopy,which is rapid,cost-effective,in-situ,nondestructive and without hazardous chemicals,is increasingly being used for prediction and digital soil mapping of soil organic matter(SOM).This method is the inevitable demand for precision agriculture and soil remote sensing mapping.In the present study,the Vis-NIR(350~2 500 nm) diffuse reflectance spectral collected by ASD FieldSpec Pro FR spectrometer was truncated by removing the noisy edge values below 400 nm and above 2 450 nm and then was transformed into apparent absorbance spectral using log(1/R).Based on the relationship analysis between absorbance spectral,spectral indices and SOM,partial least squares regression(PLSR) model was applied to predict SOM,and finally the spatial variability of SOM was characterized by geostatistics method.The results indicated that good model was modeling from the characteristic bands(CB,R2=0.91,RPD=3.28) of correlation coefficient more than 0.5,the spectral index(SI) of normalized difference index(NDI,R2=0.90,RPD=3.08),CB integrating SI with which a correlation coefficient was more than 0.5(R2=0.87,RPD=2.67),and total bands(TA,400~2 450 nm,R2=0.95,RPD=4.36).While the digital mapping of SOM produced by kriging and cokriging interpolation methods implied a better prediction result,showing similar spatial distribution with the measured SOM,indicating that it is feasible and reliable to use these spectral indices to predict and map the spatial variability.

关 键 词:Vis-NIR光谱 野外型光谱仪 土壤有机质 预测与制图 偏最小二乘回归法(PLSR) 地统计 

分 类 号:S127[农业科学—农业基础科学] TP79[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象