基于MC-UVE的土壤碱解氮和速效钾近红外光谱检测  被引量:11

Near-infrared Spectroscopy Determination of Soil Available N and Available K Based on MC-UVE Method

在线阅读下载全文

作  者:刘雪梅[1,2] 柳建设[1] 

机构地区:[1]东华大学环境科学与工程学院,上海201620 [2]华东交通大学土木建筑学院,南昌330013

出  处:《农业机械学报》2013年第3期88-91,136,共5页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家自然科学基金资助项目(41073060);江西省科技支撑计划资助项目(2010EHB02000;2009AE01603)

摘  要:应用可见/短波近红外光谱分析测量土壤碱解氮和速效钾含量。为了提高该分析方法的预测精度,消除无信息建模变量对模型稳定性的影响,原始光谱平滑后采用蒙特卡罗无信息变量消除方法(MC-UVE)对土壤碱解氮和速效钾的建模变量进行筛选,应用偏最小二乘方法(PLS)建立校正模型。对于碱解氮模型,采用MC-UVE PLS方法,建模变量减少为210,相关系数和预测均方差分别为0.84和17.1 mg/kg。对于速效钾的预测模型,采用MC-UVE方法后,建模变量减少为150,模型的预测相关系数为0.76,预测均方根误差为15.4 mg/kg。Visible/near-infrared spectroscopy (Vis/NIRS) was investigated for determination of soil properties, namely, available nitrogen (N) and available potassium (K). In order to improve the predictive precision and eliminate the influence of uninformative variables for model robustness, Monte Carlo uninformative variables elimination ( MC - UVE) methods were proposed for variable selection in available N and available K NIR spectral modeling. Partial least squares (PLS) models analysis was implemented for calibration models. The modeling variable number was reduced to 210 from 751 for available N calibration model and 150 for available K calibration model. The performance of the model was evaluated by the correlation coefficient (R) , RMSEP. The optimal MC - UVE PLS models were achieved, and R, RMSEP were 0. 84, 17. 1 mg/kg for N and 0.76, 15.4 mg/kg for K, respectively

关 键 词:土壤 碱解氮 速效钾 近红外光谱蒙特卡罗无信息变量消除 

分 类 号:O657.33[理学—分析化学] S158.2[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象