从模糊神经网络技术探讨普通感冒的证候特征  被引量:4

Syndrome Characteristics of Fuzzy Neural Network Technology on the Common Cold

在线阅读下载全文

作  者:王至婉[1,2] 胡金亮[2] 李建生[1] 张甜[1] 

机构地区:[1]河南中医学院,河南郑州450046 [2]河南中医学院第一附属医院,河南郑州450001

出  处:《中医学报》2013年第3期334-336,共3页Acta Chinese Medicine

基  金:河南省高校新世纪优秀人才支持计划(编号:2006HANCET-05)

摘  要:目的:运用模糊神经网络技术探讨普通感冒常见证候及其主症、次症的特征。方法:收集7所三级甲等医院普通感冒患者资料,应用Epidata软件建立数据库;运用MATLAB 6.5软件进行编程。从互联网搜集了Fisher-iris数据,选取人工神经网络与模糊系统方法,采用动态kehonen网络,获得最优模糊规则。结果:最终获取20个模糊规则,通过规则转换及设定筛选出5个常见证候,即风寒证、风热证、风燥证、痰热证及痰湿证,并对其主症、次症特征进行筛选。结论:普通感冒常见证候有5种,其主症、次症特征可作为临床辨证的参考;模糊神经网络技术可用于中医证候特征的研究。Objective:To use the common cold syndromes and with secondary characteristics of fuzzy neural network technology. Methods : To collect 7 hospital patients with common cold data, use Epidata software to establish the database by using MATLABr. 5 software programming. From internet fisher-iris collected data selection, artificial neural network and fuzzy system method, using dynamic kehonen network, obtaining the optimal fuzzy rules. Results: The final 20 to obtain fuzzy rules, through the conversion rules and setting the selected 5 common syndromes, i. e, wind-cold syndrome, wind-heat syndrome,wind dryness, phlegm and dampness, phlegm heat syndrome. And its characteristics were screened with secondary. Conclusion: The common cold syndromes are 5, the primary and secondary disease characteristics can be used as a clinical syndrome differentiation and reference ;fuzzy neural network technology can be used for TCM syndrome characteristics.

关 键 词:普通感冒 证候 模糊神经网络技术 

分 类 号:R2-03[医药卫生—中医学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象