检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]陕西师范大学数学与信息科学学院,西安710062
出 处:《重庆师范大学学报(自然科学版)》2013年第2期42-45,共4页Journal of Chongqing Normal University:Natural Science
基 金:国家自然科学基金(No.10971123);陕西省自然科学基础研究计划项目(No.SJ08A20)
摘 要:讨论了离散时间正奇异系统的可容许性问题,系统的可容许性是指系统是正则的、因果的、稳定的。首先根据离散时间正奇异系统稳定性的一个李亚普诺夫不等式条件(EDA)TP(EDA)-P<0,利用线性矩阵不等式的方法,给出其可容许的一个充要条件;进一步讨论了如果一个离散正奇异系统存在单项分解,利用矩阵分解的方法,给出它可容许的一个充要条件:对任给的正定矩阵Y,存在对角半正定矩阵X满足李亚普诺夫方程ATXA-ETXE+ETYE=0和秩条件rank(ETXE)=r。最后给出实例验证结论的可行性。The admissibility of positive discrete-time singular system is discussed in this paper, if a system is regular, causal, sta- ble, we call it admissible. Firstly, according to the Lyapunov inequality ( E ^DA ^) TP( E ^DA ^) -P〈0, which is a condition of stability for the positive discrete-time singular system, a necessary and sufficient condition for the system to be admissible are expressed in Linear Matrix Inequalities terms. Furthermore, suppose the system has a monomial decomposition, it is admissible if and only if there exists a positive definite diagonal matrix X and a positive definite matrix Y such that A^TX A-E^TX E+E^T Y E=0 and r a n k( E^TX E) = r, Finally, numerical example is given to illustrate the validity of the proposed conditions.
分 类 号:O231[理学—运筹学与控制论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249