Reduction Behavior With CO Under Micro-Fluidized Bed Conditions  被引量:3

Reduction Behavior With CO Under Micro-Fluidized Bed Conditions

在线阅读下载全文

作  者:LIN Yin-he GUO Zhan-cheng TANG Hui-qing 

机构地区:[1]State Key Laboratory of Advanced Metallurgy,University of Science and Technology Beijing

出  处:《Journal of Iron and Steel Research International》2013年第2期8-13,共6页

基  金:Item Sponsored by National Natural Science Foundation of China(50834007)

摘  要:To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a differential reactor to ensure an equal temperature and residence time with the reactor volume. The experiment used Brazilian iron ore and reducing gas of CO. The operating temperature was 400 to 800 ℃ and the residence time was between 10 and 60 min. In correspondence with experiment, microscopic technique was applied too. The test shows that temperature and residence time of the pre-reduction stage have an important effect on the degree of reduction. By using two-step experiment, the maximum value of reduction degree increases by 44.1% compared with the maximum value of traditional reduction experiment. Microscopic analysis shows that the specific surface area, surface morphology and texture of reduced iron ore after pre-reduction stage have an important effect on the degree of final reduction too.To process optimization and improve the degree of reduction, a two-step experiment was designed. The experiment was carried out in the micro-fluidized bed. The reactor in the micro-fluidized bed is operated as a differential reactor to ensure an equal temperature and residence time with the reactor volume. The experiment used Brazilian iron ore and reducing gas of CO. The operating temperature was 400 to 800 ℃ and the residence time was between 10 and 60 min. In correspondence with experiment, microscopic technique was applied too. The test shows that temperature and residence time of the pre-reduction stage have an important effect on the degree of reduction. By using two-step experiment, the maximum value of reduction degree increases by 44.1% compared with the maximum value of traditional reduction experiment. Microscopic analysis shows that the specific surface area, surface morphology and texture of reduced iron ore after pre-reduction stage have an important effect on the degree of final reduction too.

关 键 词:iron ore reduction two-step experiment specific suriace area MORPHOLOGY pre-reduction degree finalreduction degree 

分 类 号:X701[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象