检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京航空航天大学自动化学院,南京210016 [2]南京航空航天大学航天学院,南京210016
出 处:《中国惯性技术学报》2013年第1期7-9,共3页Journal of Chinese Inertial Technology
基 金:国家自然科学基金(60974107);江苏省自然科学基金(KB2011729)
摘 要:由于卫星运动的不可交换性,在卫星测量过程中引入螺旋修正算法描述编队卫星中主从星的相对位置和姿态信息,提出了基于螺旋修正的编队卫星相对位姿测量算法。首先基于典型的螺旋环境,设计了螺旋修正算法,论证了其与传统圆锥修正算法和划船修正算法的一致性,采用三子样螺旋修正算法进行仿真并与传统算法的精度进行比较。仿真结果表明该算法的位置和姿态精度分别可以达到10-3 m和10-6数量级,满足测量精度要求。该算法不用像传统算法分别为卫星的位置更新和姿态更新设计两组优化系数,因此降低了算法复杂度。In view that the satellite motion is non-exchangeable,a spiral correction algorithm was put forward to describe the relative position and attitude information of principal satellite and deputy satellite during measurement procedure,and a relative position and attitude measurement algorithm was proposed based on spiral correction.At first,the spiral correction algorithm was designed based on the typical spiral motion.Then its consistency with traditional coning correction and sculling correction algorithm was proved by using three-subsample spiral correction in simulation,and its accuracy was compared with traditional algorithms.The simulation result shows that the accuracy level of position and attitude could reach 10-3 m and 10-6,respectively,which could perfectly satisfy the accuracy requirement.Unlike traditional algorithms,the spiral correction algorithm doesn't have to design two sets of coefficients respectively for updating the satellite's position and attitude,reducing the complexity of the algorithm.
分 类 号:U666.1[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.144.201.213