Dependence of Mixed Aerosol Light Scattering Extinction on Relative Humidity in Beijing and Hong Kong  被引量:4

Dependence of Mixed Aerosol Light Scattering Extinction on Relative Humidity in Beijing and Hong Kong

在线阅读下载全文

作  者:LI Cheng-Cai HE Xiu DENG Zhao-Ze Alexis Kai-Hon LAU LI Ying 

机构地区:[1]Department of Atmospheric and Oceanic Sciences, School of Physics, Peking University [2]Aviation Meteorological Center, Air Traffic Management Bureau, Civil Aviation Administration of China [3]Key Laboratory of Middle Atmosphere and Global Environment Observation, Institute of Atmospheric Physics, Chinese Academy of Sciences [4]Institute for the Environment/Environmental Central Facility, The Hong Kong University of Science and Technology (HKUST)

出  处:《Atmospheric and Oceanic Science Letters》2013年第2期117-121,共5页大气和海洋科学快报(英文版)

基  金:supported by the"Strategic Priority Research Program" of the Chinese Academy of Sciences (Grant No. XDA05040000);the National Natural Science Foundation of China (Grant Nos. 40775002 and 41175020);the National High Technology Research and Development Program of China (863 Program, Grant No. SQ2010AA1221583001)

摘  要:The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a func tion of relative humidity (RH) for two representative me tropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM10 (particulate matter up to 10 utm in diameter) and aerosol scattering extinction coefficient (aext) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as O'ext/PMl0) and RH can be expressed by regression func tions asf= 1.52x + 0.29 (re= 0.77),f= 1.42x + 1.53 (re= 0.58),f= 1.19x + 0.65 (re= 0.59), andf= 1.58x + 1.30 (re = 0.61) for spring, summer, autumn, and winter, respec tively, in Beijing. Here, f represents MEE, x represents I/(1-RH), and the coefficients of determination are pre sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f= 1.98x- 1.40 (r^2= 0.55),f = 1.32x - 0.36 (r^2 = 0.26),f= 1.87x - 0.65 (r^2 = 0.64), and f= 2.39x - 1.47 (r^2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH 〉 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hy groscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and ground level air quality using some of the optical remote sensing products of satellites.The hygroscopic properties of mixed aerosol particles are crucial for the application of remote sensing products of aerosol optical parameters in the study of air quality and climate at multiple scales. In this study, the authors investigated aerosol optical properties as a function of relative humidity (RH) for two representative metropolises: Beijing and Hong Kong. In addition to the RH data, mass concentrations of PM 10 (particulate matter up to 10 μm in diameter) and aerosol scattering extinction coefficient (σ ext ) data were used. The relationship between the mass scattering extinction efficiency (MEE, defined as σ ext /PM 10 ) and RH can be expressed by regression functions as f = 1.52x + 0.29 (r2 = 0.77), f = 1.42x + 1.53 (r2 = 0.58), f = 1.19x + 0.65 (r2 = 0.59), and f = 1.58x + 1.30 (r2 = 0.61) for spring, summer, autumn, and winter, respectively, in Beijing. Here, f represents MEE, x represents 1/(1 RH), and the coefficients of determination are pre- sented in parentheses. Conversely, in Hong Kong, the corresponding functions are f = 1.98x 1.40 (r2 = 0.55), f = 1.32x 0.36 (r2 = 0.26), f = 1.87x 0.65 (r2 = 0.64), and f = 2.39x 1.47 (r2 = 0.72), respectively. The MEE values for Hong Kong at high RHs (RH > 70%) are higher than those for Beijing, except in summer; this suggests that aerosols in Hong Kong are more hygroscopic than those in Beijing for the other three seasons, but the aerosol hygroscopicity is similarly high in summer over both cities. This study describes the effects of moisture on aerosol scattering extinction coefficients and provides a potential method of studying atmospheric visibility and groundlevel air quality using some of the optical remote sensing products of satellites.

关 键 词:mass extinction efficiency hygroscopicityJBeijing Hong Kong / 

分 类 号:X513[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象