机构地区:[1]School of Electrical and Automation Engineering,Tianjin University [2]Tianjin Key Laboratory of Information Sensing & Intelligent Control,Tianjin University of Technology and Education
出 处:《Chinese Physics B》2013年第2期550-558,共9页中国物理B(英文版)
基 金:Project supported by the Key Program of the National Natural Science Foundation of China (Grant No. 50537030);the National Natural Science Foundation of China (Grant Nos. 61072012 and 61172009);the Young Scientists Fund of the National Natural Science Foundation of China (Grant Nos. 61104032 and 60901035);the Tianjin Municipal Natural Science Foundation,China (Grant No. 12JCZDJC21100)
摘 要:Manual acupuncture is widely used for pain relief and stress control.Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions.To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level,we acupuncture at ST36 of a right leg to obtain electroencephalograph(EEG) signals.By coherence estimation,we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states.The resulting synchronization matrices are converted into functional networks by applying a threshold,and the clustering coefficients and path lengths are computed as a function of threshold.The results show that acupuncture can increase functional connections and synchronizations between different brain areas.For a wide range of thresholds,the clustering coefficient during acupuncture and postacupuncture period is higher than that during the pre-acupuncture control period,whereas the characteristic path length is shorter.We provide further support for the presence of "small-world" network characteristics in functional networks by using acupuncture.These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture,which could contribute to the understanding of the effects of acupuncture on the entire brain,as well as the neurophysiological mechanisms underlying acupuncture.Moreover,the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.Manual acupuncture is widely used for pain relief and stress control.Previous studies on acupuncture have shown its modulatory effects on the functional connectivity associated with one or a few preselected brain regions.To investigate how manual acupuncture modulates the organization of functional networks at a whole-brain level,we acupuncture at ST36 of a right leg to obtain electroencephalograph(EEG) signals.By coherence estimation,we determine the synchronizations between all pairwise combinations of EEG channels in three acupuncture states.The resulting synchronization matrices are converted into functional networks by applying a threshold,and the clustering coefficients and path lengths are computed as a function of threshold.The results show that acupuncture can increase functional connections and synchronizations between different brain areas.For a wide range of thresholds,the clustering coefficient during acupuncture and postacupuncture period is higher than that during the pre-acupuncture control period,whereas the characteristic path length is shorter.We provide further support for the presence of "small-world" network characteristics in functional networks by using acupuncture.These preliminary results highlight the beneficial modulations of functional connectivity by manual acupuncture,which could contribute to the understanding of the effects of acupuncture on the entire brain,as well as the neurophysiological mechanisms underlying acupuncture.Moreover,the proposed method may be a useful approach to the further investigation of the complexity of patterns of interrelations between EEG channels.
关 键 词:manual acupuncture ELECTROENCEPHALOGRAPH SYNCHRONIZATION functional connectivity
分 类 号:R245[医药卫生—针灸推拿学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...