机构地区:[1]State Key Laboratory for Magnetism,Institute of Physics,Chinese Academy of Sciences
出 处:《Chinese Physics B》2013年第3期1-15,共15页中国物理B(英文版)
基 金:Project supported by the National Natural Science Foundation of China (Grant Nos. 51271196,11274357,and 51021061);the Key Research Program of the Chinese Academy of Sciences;the National Basic Research Program of China (Grant No. 2010CB833102);the Hi-Tech Research and Development Program of China (Grant No. 2011AA03A404)
摘 要:Our recent progress on magnetic entropy change(S) involving martensitic transition in both conventional and metamagnetic NiMn-based Heusler alloys is reviewed.For the conventional alloys,where both martensite and austenite exhibit ferromagnetic(FM) behavior but show different magnetic anisotropies,a positive S as large as 4.1 J·kg^-1·K^-1 under a field change of 0-0.9 T was first observed at martensitic transition temperature T M~197 K.Through adjusting the Ni:Mn:Ga ratio to affect valence electron concentration e/a,T M was successfully tuned to room temperature,and a large negative S was observed in a single crystal.The △S attained 18.0 J·kg^-1·K^-1 under a field change of 0-5 T.We also focused on the metamagnetic alloys that show mechanisms different from the conventional ones.It was found that post-annealing in suitable conditions or introducing interstitial H atoms can shift the T M across a wide temperature range while retaining the strong metamagnetic behavior,and hence,retaining large magnetocaloric effect(MCE) and magnetoresistance(MR).The melt-spun technique can disorder atoms and make the ribbons display a B2 structure,but the metamagnetic behavior,as well as the MCE,becomes weak due to the enhanced saturated magnetization of martensites.We also studied the effect of Fe/Co co-doping in Ni 45(Co1-xFex)5 Mn36.6In13.4 metamagnetic alloys.Introduction of Fe atoms can assist the conversion of the Mn-Mn coupling from antiferromagnetic to ferromagnetic,thus maintaining the strong metamagnetic behavior and large MCE and MR.Furthermore,a small thermal hysteresis but significant magnetic hysteresis was observed around TM in Ni51Mn49-xInx metamagnetic systems,which must be related to different nucleation mechanisms of structural transition under different external perturbations.Our recent progress on magnetic entropy change(S) involving martensitic transition in both conventional and metamagnetic NiMn-based Heusler alloys is reviewed.For the conventional alloys,where both martensite and austenite exhibit ferromagnetic(FM) behavior but show different magnetic anisotropies,a positive S as large as 4.1 J·kg^-1·K^-1 under a field change of 0-0.9 T was first observed at martensitic transition temperature T M~197 K.Through adjusting the Ni:Mn:Ga ratio to affect valence electron concentration e/a,T M was successfully tuned to room temperature,and a large negative S was observed in a single crystal.The △S attained 18.0 J·kg^-1·K^-1 under a field change of 0-5 T.We also focused on the metamagnetic alloys that show mechanisms different from the conventional ones.It was found that post-annealing in suitable conditions or introducing interstitial H atoms can shift the T M across a wide temperature range while retaining the strong metamagnetic behavior,and hence,retaining large magnetocaloric effect(MCE) and magnetoresistance(MR).The melt-spun technique can disorder atoms and make the ribbons display a B2 structure,but the metamagnetic behavior,as well as the MCE,becomes weak due to the enhanced saturated magnetization of martensites.We also studied the effect of Fe/Co co-doping in Ni 45(Co1-xFex)5 Mn36.6In13.4 metamagnetic alloys.Introduction of Fe atoms can assist the conversion of the Mn-Mn coupling from antiferromagnetic to ferromagnetic,thus maintaining the strong metamagnetic behavior and large MCE and MR.Furthermore,a small thermal hysteresis but significant magnetic hysteresis was observed around TM in Ni51Mn49-xInx metamagnetic systems,which must be related to different nucleation mechanisms of structural transition under different external perturbations.
关 键 词:magnetic entropy change martensitic transition NiMn-based Heusler alloys
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...