检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LIU HaiTao CONG Jin
机构地区:[1]School of International Studies,Zhejiang University
出 处:《Chinese Science Bulletin》2013年第10期1139-1144,共6页
基 金:supported by the National Social Science Foundation of China (09BYY024 and 11&ZD188)
摘 要:This study investigates the feasibility of applying complex networks to fine-grained language classification and of employing word co-occurrence networks based on parallel texts as a substitute for syntactic dependency networks in complex-network-based language classification.14 word co-occurrence networks were constructed based on parallel texts of 12 Slavic languages and 2 non-Slavic languages,respectively.With appropriate combinations of major parameters of these networks,cluster analysis was able to distinguish the Slavic languages from the non-Slavic and correctly group the Slavic languages into their respective sub-branches.Moreover,the clustering could also capture the genetic relationships of some of these Slavic languages within their sub-branches.The results have shown that word co-occurrence networks based on parallel texts are applicable to fine-grained language classification and they constitute a more convenient substitute for syntactic dependency networks in complex-network-based language classification.This study investigates the feasibility of applying complex networks to fine-grained language classification and of employing word co-occurrence networks based on parallel texts as a substitute for syntactic dependency networks in complex-network-based language classification. 14 word co-occurrence networks were constructed based on parallel texts of 12 Slavic languages and 2 non-Slavic languages, respectively. With appropriate combinations of major parameters of these networks, cluster analysis was able to distinguish the Slavic languages from the non-Slavic and correctly group the Slavic languages into their respective sub-branches. Moreover, the clustering could also capture the genetic relationships of some of these Slavic languages within their sub-branches. The results have shown that word co-occurrence networks based on parallel texts are applicable to fine-grained language classification and they constitute a more convenient substitute for syntactic dependency networks in complex-network- based language classification.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15