检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何改云[1] 刘欣[1] 刘佩佩[1] 郭龙真[1]
机构地区:[1]天津大学机构理论与装备设计教育部重点实验室,天津300072
出 处:《计算机集成制造系统》2013年第3期474-479,共6页Computer Integrated Manufacturing Systems
基 金:国家自然科学基金资助项目(50975200)~~
摘 要:为进一步提高复杂曲面轮廓度误差评定的精度和效率,提出一种计算点到曲面最短距离的分割球面逼近方法。该方法首先分割曲面以确定测点垂足所在的曲面片;然后用曲面片上的四点构成球面去逼近该曲面片,利用球面的几何性质求得测点到曲面片的近似距离;最后再分割该曲面片,重复上述步骤,当相邻两次的结果之差小于设定阈值时停止分割。在分割球面逼近方法的基础上结合改进单纯形法对复杂曲面轮廓度误差进行了评定。计算实例表明,分割球面逼近方法快速、精确,适用于复杂曲面轮廓度误差评定。A subdivision and sphere approximation method was presented in order to improve the accuracy and effi- ciency of the evaluation. First of all, the surface patch containing the perpendicular foot of measuring point was de- termined by subdividing the surface. A sphere, approximating the surface patch, was constructed with four points on the surface patch and the approximate distance was then obtained based on the geometric properties of spher~ Fi- nally, the surface patch was subdivided and the above process was iterated until the difference between adjacent re- suits was less than the preset threshold. The evaluating of complex surface profile error was realized by using subdi- vision and sphere approximation method combined with improved simplex method. The calculating examples showed that the subdivision and sphere approximation method was rapid and accurate, which was suitable for the evaluating of complex surface profile error.
关 键 词:最短距离 分割球面逼近 轮廓度误差 改进单纯形法
分 类 号:TH161[机械工程—机械制造及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222