检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]湛江师范学院数学与计算科学学院,广东湛江524048 [2]河南商业高等专科学校应用电子系,河南郑州450044
出 处:《计算机应用与软件》2013年第3期250-254,共5页Computer Applications and Software
基 金:湛江师范学院青年项目(QL1103)
摘 要:为了提高短时交通流量的预测精度,提出一种蚁群算法(ACO)优化支持向量机(SVM)参数的短时交通流量预测模型(ACO-SVM)。将SVM参数的选取看作参数的组合优化问题求解,采用鲁棒性较强的ACO来搜索最优解。仿真结果表明,ACO-SVM在预测精度、收敛速度、泛化能力等方面均优于参比模型,更适合于短时交通流量的预测。In order to improve the prediction accuracy of short-term traffic flow,this paper proposes a short-term traffic flow prediction model based on support vector machine(SVM) optimised by ant colony algorithm(ACO).The parameters selection problem of SVM could be considered as the problem solving with parameters combinatorial optimisation,ACO with fine performance of robustness is applied to search the optimal value of objective function.Simulation results show that the proposed ACO-SVM method is superior to reference models on the aspects of prediction accuracy,convergence time,generalisation ability and so on,and is more suitable for short-term traffic flow prediction.
分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30