检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Aerospace Engineering and Applied Mechanics, Tongji University
出 处:《Applied Mathematics and Mechanics(English Edition)》2013年第4期395-404,共10页应用数学和力学(英文版)
基 金:Project supported by the National Natural Science Foundation of China (No. 11072177)
摘 要:The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson's ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness.The bending problem of a thin rectangular plate with in-plane variable stiffness is studied. The basic equation is formulated for the two-opposite-edge simply supported rectangular plate under the distributed loads. The formulation is based on the assumption that the flexural rigidity of the plate varies in the plane following a power form, and Poisson's ratio is constant. A fourth-order partial differential equation with variable coefficients is derived by assuming a Levy-type form for the transverse displacement. The governing equation can be transformed into a Whittaker equation, and an analytical solution is obtained for a thin rectangular plate subjected to the distributed loads. The validity of the present solution is shown by comparing the present results with those of the classical solution. The influence of in-plane variable stiffness on the deflection and bending moment is studied by numerical examples. The analytical solution presented here is useful in the design of rectangular plates with in-plane variable stiffness.
关 键 词:in-plane variable stiffness power form Levy-type solution rectangular plate
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.220.70.192