基于分形和H.264的视频编码系统  被引量:8

Video coding system based on fractal and H.264

在线阅读下载全文

作  者:祝世平[1] 张玲[1] 

机构地区:[1]北京航空航天大学仪器科学与光电工程学院测控与信息技术系,北京100191

出  处:《光学精密工程》2013年第3期774-781,共8页Optics and Precision Engineering

基  金:国家自然科学基金资助项目(No.61075011;No.60675018);教育部留学回国人员科研启动基金资助项目

摘  要:基于具有快速编解码速度的分形编码技术,提出了新的H.264中P帧预测方法,用于减少视频压缩编码时间并降低码流输出。首先,分析了H.264的帧内预测算法、帧间预测算法和P帧预测算法的优缺点,介绍了本文提出的基于分形编码的新型视频压缩编码方法,讨论了该方法的优缺点。然后,结合H.264和分形的优点,用分形预测的方式对H.264中的P帧进行预测。最后,给出了在H.264中用分形预测改进P帧编码所产生的分形系数的编码和残差的编码。实验结果表明:与目前国际视频压缩标准H.264的标准测试模型JM15.1相比,在忽略峰值信噪比的情况下(平均降低0.09dB),改进的P帧预测方法的码流和压缩时间分别降低为JM15.1的65%和19%,并且能够适应各种运动类型的视频序列。研究显示,改进的P帧预测方法显著提高了H.264的总体编码性能。On the basis of the fractal encoding technology with a higher speed, a new H. 264 P frame prediction method and a corresponding fast coding system were proposed to decrease the video com- pression coding time and bit rate. Firstly, the main ideas of intra-- /inter-- prediction in H. 264 and their advantages and disadvantages in P frame encoding were analyzed. Then, the new video compres- sion method based on the fractal video compression and its characteristics were discussed. Further- more, by combining the advantages of new standard H. 264 with fractal video compression method, the P frame in H. 264 was predicted by proposed method. Finally, the fractal coefficients coding and residual coding generated from fractal prediction encoding were given. Experimental results show that the proposed coding system has reduced the bit rate and the encoding time to 65% and 19% respec- tively comparing to those of the H. 264 reference software JM15.1, while the Peak Signal Noise Ratio (PSNR) can be ignored (average reduce 0.09 dB). These results can satisfy the requirements of varia- ble motion video sequences and can improve the overall performance of the H. 264 video coding sys- tem.

关 键 词:视频压缩 视频编码 H 264 分形编码 帧间预测 P帧预测 

分 类 号:TN919.81[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象