Preparation and Electrochemical Performance of Nano-Co_3O_4 Anode Materials from Spent Li-Ion Batteries for Lithium-Ion Batteries  被引量:11

Preparation and Electrochemical Performance of Nano-Co_3O_4 Anode Materials from Spent Li-Ion Batteries for Lithium-Ion Batteries

在线阅读下载全文

作  者:Chuanyue Hu Jun Guo Jin Wen Yangxi Peng 

机构地区:[1]Department of Chemistry and Materials Science,Hunan Institute of Humanities,Science and Technology

出  处:《Journal of Materials Science & Technology》2013年第3期215-220,共6页材料科学技术(英文版)

基  金:supported by Project Supported by the Planned Science and Technology Project of Hunan Province, China(Nos.2011F J3160,2011GK2002);Project Supported by Scientific Research Fund of Hunan Provincial Education Department(10B054)

摘  要:A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt oxalate. The recycled cobalt oxalate was used to synthesize nano-Co3O4 anode material by sol-gel method. The samples were characterized by thermal gravity analysis and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge/discharge measurements. The influence of molar ratio of Co2+ to citric acid and calcination temperature on the structure and electrochemical performance of nano-Co3O4 was evaluated. As the molar ratio of Co2+ to citric acid is 1:1, the face-centered cubic (fcc) Co3O4 powder shows the discharge capacity of 760.9 mA h g-1, the high coulombic efficiency of 99.7% in the first cycle at the current density of 125 mA g-l, and the excellent cycling performance with the reversible capacity of 442.3 mA h g-1 after 20 cycles at the current density of 250 mA g-1.A hydrometallurgical process for the recovery of cobalt oxalate from spent lithium-ion batteries was used to recycle cobalt compound by using alkali leaching, reductive acid leaching and chemical deposition of cobalt oxalate. The recycled cobalt oxalate was used to synthesize nano-Co3O4 anode material by sol-gel method. The samples were characterized by thermal gravity analysis and differential thermal analysis (TGA/DTA), X-ray diffraction (XRD), scanning electron microscopy (SEM) and charge/discharge measurements. The influence of molar ratio of Co2+ to citric acid and calcination temperature on the structure and electrochemical performance of nano-Co3O4 was evaluated. As the molar ratio of Co2+ to citric acid is 1:1, the face-centered cubic (fcc) Co3O4 powder shows the discharge capacity of 760.9 mA h g-1, the high coulombic efficiency of 99.7% in the first cycle at the current density of 125 mA g-l, and the excellent cycling performance with the reversible capacity of 442.3 mA h g-1 after 20 cycles at the current density of 250 mA g-1.

关 键 词:Spent lithium-ion batteries Sol-gel method Reductive acid leaching Nanostructure cobalt oxide Electrochemical behavior 

分 类 号:TM912[电气工程—电力电子与电力传动] TB383.1[一般工业技术—材料科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象