检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]浙江工业大学机械工程学院,浙江杭州310014
出 处:《机电工程》2013年第3期373-379,383,共8页Journal of Mechanical & Electrical Engineering
基 金:国家自然科学基金资助项目(70971118);浙江省自然科学基金资助项目(LY12E05021);浙江省教育厅科研资助项目(Y201121984)
摘 要:针对一类具有生产物流时间瓶颈的加工车间调度问题,给出了基于加工单元和运输单元的时间瓶颈环节确定方法,采用以最大批量响应时间最小为优化目标,建立了基于生产物流时间瓶颈的加工车间调度模型;为了求解该调度模型,设计了一种基于模拟退火的混合粒子群算法,该算法采用分段整数编码的方法,并在模拟退火算法中引入变温参数来提高算法效率。通过仿真,分别采用PSO和PSO-SA对所建立的调度模型进行了求解。研究结果表明,PSO-SA算法求解效率高且该算法的稳定性好,同时验证了该模型和算法的有效性、广泛性。Aiming at solving a kind of scheduling problem of work-shop with the bottleneck in cycle-time, firstly, the bottleneck in cycle-time with the work and transport unit was presented based on the minimize maximum mass response time, and the scheduling model was built based on the bottleneck in cycle-time. Then, according to the characteristics of work-shop, a hybrid algorithm with particle swarm optimization(PSO) and simulated annealing(SA) algorithm was proposed to solve the model. In the hybrid algorithm, a subsection integer coding method was taken for simple. A dynamic temperature parameter was introduced to simulate annealing algorithm for increasing the algorithm's efficiency. The simulation was given to test the scheduling model using the algorithms of PSO and PSO-SA. The results indicate that the PSO-SA algorithm has high solving efficiently, good stability, it validates the effectiveness and the universality of the model and algorithm.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222