检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]合肥工业大学电气与自动化工程学院,合肥230009
出 处:《系统工程理论与实践》2013年第4期1084-1088,共5页Systems Engineering-Theory & Practice
基 金:国家自然科学基金(61203106;60974022);国家自然科学基金重点项目(50837001)
摘 要:风速的建模和预测对有效利用风能有着重要意义,由于风速时间序列为非正态分布且有易变性,应用统计建模的方法来精确预测风速往往较困难.本文基于一种类似于高阶马尔可夫链的Mycielski方法来预测风速,为提高预测精度,风速状态被重新定义在一个较小的范围内,然后在历史数据序列中搜寻最长长度的重复序列.数值实验和比较结果的F检验值表明改进的Mycielski方法在预测精度上得到了显著提高.Wind speed modeling and prediction is important for utility of wind power. Since the wind speed data are non-normally distributed and have highly variable nature, it is very difficult to predict the wind speed accurately by applying statistical approaches. This paper predicts the wind speed using the Myeielski approach which is similar to a high order Markov chian approach. To improve the prediction accuracy, the wind speed states are redefined in a smaller region. Then, the Mycielski algorithm searches the longest suffix string at the end of the data sequence which had repeated at least once in the history of the sequence. The simulation examples and the F-test values of the comparsion results show that the prediction performance of the proposed approach is improved significantly.
关 键 词:Mycielski算法 风速预测
分 类 号:TM614[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.59