检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:JIANG Fei JIANG Song NI GuoXi
机构地区:[1]College of Mathematics and Computer Science,Fuzhou University [2]Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics
出 处:《Science China Mathematics》2013年第4期665-686,共22页中国科学:数学(英文版)
基 金:supported by National Natural Science Foundation of China (Grant Nos. 11101044,11271051,11229101 and 91130020);National Basic Research Program of China (Grant No.2011CB309705)
摘 要:We investigate the nonlinear instability of a smooth steady density profile solution to the threedimensional nonhomogeneous incompressible Navier-Stokes equations in the presence of a uniform gravitational field,including a Rayleigh-Taylor steady-state solution with heavier density with increasing height(referred to the Rayleigh-Taylor instability).We first analyze the equations obtained from linearization around the steady density profile solution.Then we construct solutions to the linearized problem that grow in time in the Sobolev space H k,thus leading to a global instability result for the linearized problem.With the help of the constructed unstable solutions and an existence theorem of classical solutions to the original nonlinear equations,we can then demonstrate the instability of the nonlinear problem in some sense.Our analysis shows that the third component of the velocity already induces the instability,which is different from the previous known results.We investigate the nonlinear instability of a smooth steady density profile solution to the three- dimensional nonhomogeneous incompressible Navier-Stokes equations in the presence of a uniform gravitational field, including a Rayleigh-Taylor steady-state solution with heavier density with increasing height (referred to the Rayleigh-Taylor instability). We first analyze the equations obtained from linearization around the steady density profile solution. Then we construct solutions to the linearized problem that grow in time in the Sobolev space Hk, thus leading to a global instability result for the linearized problem. With the help of the constructed unstable solutions and an existence theorem of classical solutions to the original nonlinear equations, we can then demonstrate the instability of the nonlinear problem in some sense. Our analysis shows that the third component of the velocity already induces the instability, which is different from the previous known results.
关 键 词:nonhomogeneous Navier-Stokes equations steady density profile Rayieigh-Taylor instability incompressible viscous flows
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.185