Learning rates of regularized regression on the unit sphere  被引量:2

Learning rates of regularized regression on the unit sphere

在线阅读下载全文

作  者:CAO FeiLong LIN ShaoBo CHANG XiangYu XU ZongBen 

机构地区:[1]Institute of Metrology and Computational Science,China Jiliang University [2]Institute for Information and System Sciences,Xi'an Jiaotong University

出  处:《Science China Mathematics》2013年第4期861-876,共16页中国科学:数学(英文版)

基  金:supported by National Natural Science Foundation of China (Grant Nos. 61272023 and 61075054)

摘  要:This paper addresses the learning algorithm on the unit sphere.The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel.The excess error can be estimated by the sum of sample errors and regularization errors.Our study shows that by introducing a suitable spherical harmonics kernel,the regularization parameter can decrease arbitrarily fast with the sample size.This paper addresses the learning algorithm on the unit sphere. The main purpose is to present an error analysis for regression generated by regularized least square algorithms with spherical harmonics kernel. The excess error can be estimated by the sum of sample errors and regularization errors. Our study shows that by introducing a suitable spherical harmonics kernel, the regularization parameter can decrease arbitrarily fast with the sample size.

关 键 词:SPHERE regularized regression spherical harmonics kernel rate of convergence 

分 类 号:O212.1[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象