Complex Dynamics in a Discrete-time Predator-prey System without Allee Effect  

Complex Dynamics in a Discrete-time Predator-prey System without Allee Effect

在线阅读下载全文

作  者:Xian-wei CHEN Xiang-ling FU ZHU-JUN JING 

机构地区:[1]School of Mathematics and Computational Science, Hunan University of Science and Technology [2]Department of Mathematics, Hunan Normal University [3]Academy of Mathematics and Systems Science, Chinese Academy of Sciences

出  处:《Acta Mathematicae Applicatae Sinica》2013年第2期355-376,共22页应用数学学报(英文版)

基  金:Supported by the National Natural Science Foundation of China (No. 11071066)

摘  要:In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse period- doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.In this paper, complex dynamics of the discrete-time predator-prey system without Allee effect are investigated in detail. Conditions of the existence for flip bifurcation and Hopf bifurcation are derived by using center manifold theorem and bifurcation theory and checked up by numerical simulations. Chaos, in the sense of Marotto, is also proved by both analytical and numerical methods. Numerical simulations included bifurcation diagrams, Lyapunov exponents, phase portraits, fractal dimensions display new and richer dynamics behaviors. More specifically, this paper presents the finding of period-one orbit, period-three orbits, and chaos in the sense of Marotto, complete period-doubling bifurcation and invariant circle leading to chaos with a great abundance period-windows, simultaneous occurrance of two different routes (invariant circle and inverse period- doubling bifurcation, and period-doubling bifurcation and inverse period-doubling bifurcation) to chaos for a given bifurcation parameter, period doubling bifurcation with period-three orbits to chaos, suddenly appearing or disappearing chaos, different kind of interior crisis, nice chaotic attractors, coexisting (2,3,4) chaotic sets, non-attracting chaotic set, and so on, in the discrete-time predator-prey system. Combining the existing results in the current literature with the new results reported in this paper, a more complete understanding is given of the discrete-time predator-prey systems with Allee effect and without Allee effect.

关 键 词:predator-prey system flip bifurcation Hopf bifurcation Marotto's chaos transient chaos 

分 类 号:N93[自然科学总论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象