检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]国防科学技术大学机电工程与自动化学院,湖南长沙410073
出 处:《系统工程与电子技术》2013年第4期753-760,共8页Systems Engineering and Electronics
基 金:国家自然科学基金(61005077)资助课题
摘 要:研究了无人作战飞机(unmanned combat aerial vehicles,UCAV)对地攻击阶段的武器投放鲁棒性规划问题。针对现有规划方法在处理战场环境扰动、模型不准确、操作偏差等不确定性因素方面存在的不足,提出了一种鲁棒多目标优化求解策略。首先,建立了飞机机动性能、武器装备性能和战场环境等约束条件模型;其次,使用仿真近似法,建立了优化指标模型,并将武器投放规划问题转化为鲁棒多目标优化问题;然后,设计了一种结合蒙特卡罗方法的快速非支配排序遗传算法对问题进行求解,并采用基于基本轨迹片元的机动轨迹生成策略生成武器投放轨迹。仿真结果表明,该方法能够有效提高武器投放规划的鲁棒性。This paper studies the problem of generating robust optimal air-to-ground weapon deltvery mm- sion plan for unmanned combat aerial vehicles (UCAV). Aiming at the deficiency of existing approaches in processing some uncertainties, such as disturbing in battlefield, model imprecision and operating errors, a strategy based on a robust multi objective optimization (RMO) approach is proposed. Firstly, some constraints which include the flight capability constraint, weapon constraint and battlefield constraint, are considered. Secondly, several robust optimal cost functions are defined by using the Monte Carlo method simulating criteria of weapon delivery, and then the weapon delivery planning (WDP) problem is transformed into a RMO problem. Thirdly, an improved fast non-dominated sorting genetic algorithm (NSGA-II) combining Monte Carlo simulation is proposed, and then a traiectory generating strategy based on basic trajectory segments (BTS) is presented to generate weapon delivery trajectories. Finally, a demonstrated air-to-ground weapon delivery planning considering uncertainties is proposed and solved, and the simulated results show that the proposed approach can deal with some uncertainties in WDP efficiently.
关 键 词:飞行器 控制与导航 武器投放规划 鲁棒多目标优化 快速非支配排序遗传算法 基本轨迹片元
分 类 号:V249[航空宇航科学与技术—飞行器设计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.200