Oceanic Climatology in the Coupled Model FGOALS-g2: Improvements and Biases  被引量:4

Oceanic Climatology in the Coupled Model FGOALS-g2: Improvements and Biases

在线阅读下载全文

作  者:林鹏飞 俞永强 刘海龙 

机构地区:[1]State Key Laboratory of Numerical Modelling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences

出  处:《Advances in Atmospheric Sciences》2013年第3期819-840,共22页大气科学进展(英文版)

基  金:supported by the'Strategic Priority Research Program-Climate Change:Carbon Budget and Related Issues'of the Chinese Academy of Sciences(Grant No.XDA05110302);the National Key Program for Developing Basic Sciences(Grant No.2010CB950502);the National High-tech R&D Program of China(2010AA012303);the National Natural Science Foundation of China(Grant Nos.40906012 and 41023002)

摘  要:The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere- Land System model, Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data. The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed, and substantially improved compared to those simulated by the previous version, FGOALS-gl.0. Compared with simulations by FGOALS-gl.0, the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2. In the high latitudes of the Northern Hemisphere, the cold biases of SST were about 1℃-5℃ smaller in FGOALS-g2. The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2. The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2, although its magnitude was larger than that found in observed data. The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage, which is close to that observed. Moreover, Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2. However, large SST cold biases (〉3℃) were still found to exist around major western boundary currents and in the Barents Sea, which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution. In the Indo-Pacific warm pool, the cold biases were partly related to the excessive loss of heat from the ocean. Along the eastern coast in the Atlantic and Pacific Oceans, the warm biases were due to overestimation of shortwave radiation. In the Indian Ocean and Southern Ocean, the surface fresh biases were mainly due to the biases of precipitation. In the tropical Pacific Ocean, the surface fresh biases (〉2 psu) were mainly caused by excessive precipitation and oceanic advection. In the Indo-Pacific Ocean, fresh biases were also found to dominate in the upper 1000 m, except in the northeastern Indian Ocean. There were The present study examines simulated oceanic climatology in the Flexible Global Ocean-Atmosphere- Land System model, Grid-point Version 2 (FGOALS-g2) forced by historical external forcing data. The oceanic temperatures and circulations in FGOALS-g2 were found to be comparable to those observed, and substantially improved compared to those simulated by the previous version, FGOALS-gl.0. Compared with simulations by FGOALS-gl.0, the shallow mixed layer depths were better captured in the eastern Atlantic and Pacific Ocean in FGOALS-g2. In the high latitudes of the Northern Hemisphere, the cold biases of SST were about 1℃-5℃ smaller in FGOALS-g2. The associated sea ice distributions and their seasonal cycles were more realistic in FGOALS-g2. The pattern of Atlantic Meridional Overturning Circulation (AMOC) was better simulated in FGOALS-g2, although its magnitude was larger than that found in observed data. The simulated Antarctic Circumpolar Current (ACC) transport was about 140 Sv through the Drake Passage, which is close to that observed. Moreover, Antarctic Intermediate Water (AAIW) was better captured in FGOALS-g2. However, large SST cold biases (〉3℃) were still found to exist around major western boundary currents and in the Barents Sea, which can be explained by excessively strong oceanic cold advection and unresolved processes owing to the coarse resolution. In the Indo-Pacific warm pool, the cold biases were partly related to the excessive loss of heat from the ocean. Along the eastern coast in the Atlantic and Pacific Oceans, the warm biases were due to overestimation of shortwave radiation. In the Indian Ocean and Southern Ocean, the surface fresh biases were mainly due to the biases of precipitation. In the tropical Pacific Ocean, the surface fresh biases (〉2 psu) were mainly caused by excessive precipitation and oceanic advection. In the Indo-Pacific Ocean, fresh biases were also found to dominate in the upper 1000 m, except in the northeastern Indian Ocean. There were

关 键 词:FGOALS-g2 oceanic climatology temperature salinity ocean circulation 

分 类 号:P732.5[天文地球—海洋科学] P732.6

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象