REVISITING THE DOPPLER FILTER OF LEO SATELLITE GNSS RECEIVERS FOR PRECISE VELOCITY ESTIMATION  被引量:1

REVISITING THE DOPPLER FILTER OF LEO SATELLITE GNSS RECEIVERS FOR PRECISE VELOCITY ESTIMATION

在线阅读下载全文

作  者:Chen Xi Gao Wenyun Wan Yunheng 

机构地区:[1]Space Center,Tsinghua University

出  处:《Journal of Electronics(China)》2013年第2期138-144,共7页电子科学学刊(英文版)

基  金:Supported by the National Natural Science Foundation of China(No.61132002,61231011)

摘  要:The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites'on board Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers.The theoretical aspects of the precise velocity determination of Low Earth Orbit (LEO) satellites' onboard Global Navigation Satellite Systems (GNSS) receivers are derived. It shows that the receiver's Phase Lock Loop (PLL) is required to feature extremely small group delay within its low frequency band, which is in contrast to existing work that proposed wide band linear phase filters. Following this theory, a Finite Impulse Response (FIR) filter is proposed. To corroborate, the proposed FIR filter and an Infinite Impulse Response (IIR) filter lately proposed in literals are implemented in a LEO satellite onboard GNSS receiver. Tests are conducted using a third party commercial GPS signal generator. The results show that the GNSS receiver with the proposed FIR achieves 11 mm/s R.M.S precision, while the GNSS receiver with the IIR filter has a filter-caused velocity error that can not be ignored for space borne GNSS receivers.

关 键 词:Global Navigation Satellite Systems (GNSS) VELOCITY Doppler filter Centimetre level 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象