Spinless particles in the field of unequal scalar vector Yukawa potentials  

Spinless particles in the field of unequal scalar vector Yukawa potentials

在线阅读下载全文

作  者:M.Hamzavi S.M.Ikhdair K.E.Thylwe 

机构地区:[1]Department of Science and Engineering, Abhar Branch, Islamic Azad University, Abhar, Iran [2]Department of Electrical and Electronic Engineering, Near East University, 922022 Nicosia, North Cyprus, Mersin 10, Turkey [3]Department of Physics, Faculty of Science, An-Najah National University, Nablus, West Bank, Palestine [4]KTH-Mechanics, Royal Institute of Technology, S-100 44 Stockholm, Sweden

出  处:《Chinese Physics B》2013年第4期81-86,共6页中国物理B(英文版)

摘  要:We present analytical bound state solutions of the spin-zero Klein–Gordon (KG) particles in the field of unequal mix-ture of scalar and vector Yukawa potentials within the framework of the approximation scheme to the centrifugal potential term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed forms using a simple shortcut of the Nikiforov–Uvarov (NU) method. Further, we solve the KG–Yukawa problem for its exact numerical energy eigenvalues via the amplitude phase (AP) method to test the accuracy of the present solutions found by using the NU method. Our numerical tests using energy calculations demonstrate the existence of inter-dimensional degeneracy amongst the energy states of the KG–Yukawa problem. The dependence of the energy on the dimension D is numerically discussed for spatial dimensions D = 2–6.We present analytical bound state solutions of the spin-zero Klein–Gordon (KG) particles in the field of unequal mix-ture of scalar and vector Yukawa potentials within the framework of the approximation scheme to the centrifugal potential term for any arbitrary l-state. The approximate energy eigenvalues and unnormalized wave functions are obtained in closed forms using a simple shortcut of the Nikiforov–Uvarov (NU) method. Further, we solve the KG–Yukawa problem for its exact numerical energy eigenvalues via the amplitude phase (AP) method to test the accuracy of the present solutions found by using the NU method. Our numerical tests using energy calculations demonstrate the existence of inter-dimensional degeneracy amongst the energy states of the KG–Yukawa problem. The dependence of the energy on the dimension D is numerically discussed for spatial dimensions D = 2–6.

关 键 词:Klein–Gordon equation Yukawa potential D-dimensional space Nikiforov–Uvarov and amplitude phase methods 

分 类 号:O441[理学—电磁学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象