检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陶新民[1] 徐鹏[1] 刘福荣[2] 张冬雪[1]
机构地区:[1]哈尔滨工程大学信息与通信工程学院,黑龙江哈尔滨150001 [2]黑龙江省电力有限公司,黑龙江哈尔滨150090
出 处:《计算机仿真》2013年第4期313-316,共4页Computer Simulation
基 金:国家自然科学基金(61074076);中国博士后科学基金(20090450119);中国博士点新教师基金(20092304120017)
摘 要:在求解多目标优化问题时,针对粒子群优化算法容易陷入局部极值的现象,提出了一种组合粒子群和差分进化的多目标优化算法,使用粒子群优化算法和差分进化算法共同产生新粒子,通过一个判断因子控制两种算法的使用比例,并对粒子群优化算法的速度更新公式进行了改变,以提高搜索效率。通过三个测试函数进行了仿真,并同NSGA-Ⅱ、MOPSO-CD进行了比较。实验结果表明改进算法求得的Pareto解集收敛性和多样性好,并且算法稳定性高,运行速度快。To deal with the phenomenon of particle swarm optimization algorithm being often trapped in local opti- ma for multi - objective optimization problems, a multi - objective optimization algorithm composed of particle swarm optimization and differential evolution was proposed. Both particle swarm optimization algorithm and differential evo- lution algorithm were used to create new particles. A controlling factor was used to control the proportion of the use of two algorithms. The velocity updating formula of particle swarm optimization algorithm was changed to improve the search efficiency. Three test functions were used to evaluate the performance of the proposed algorithm, and the pro- posed algorithm was compared with NSGA - II and MOPSO - CD. The experimental results show that the Pareto sets obtained by the proposed algorithm have good convergence and diversity performance, and the proposed algorithm is stable and fast.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222