基于拥挤距离的多目标粒子群优化算法在漳河水库优化调度中的应用  被引量:10

Application of Multi-objective Particle Swarm Optimization Based on Crowding Distance to Optimal Operation of Zhanghe Reservoir

在线阅读下载全文

作  者:张小潭[1] 陈森林[1] 张峰远[2] 董前进[1] 付湘[1] 

机构地区:[1]武汉大学水资源与水电工程科学国家重点实验室,湖北武汉430072 [2]辽宁省水利水电勘测设计研究院,辽宁沈阳110006

出  处:《水电能源科学》2013年第4期42-45,共4页Water Resources and Power

基  金:国家自然科学基金资助项目(50909073;51179130)

摘  要:针对传统多目标优化算法的不足,提出了基于拥挤距离的多目标粒子群优化算法(MOPSO-CD),该算法用拥挤距离来维持精英策略和选取全局极值,同时引入动态非均匀变异算子,用以维持粒子多样性、减缓算法收敛速度、避免早熟收敛。以漳河水库为例,建立了以灌溉缺水量最小和发电量最大为目标函数的两目标优化调度模型,将MOPSO-CD应用于模型的求解中,得到了足够多且较均匀的非劣(Pareto)解前端。In view of the disadvantages of the traditional multi-objective optimization algorithm, multi-objective particle swarm optimization based on crowding distance (MOPSO-CD) was proposed. The crowding distance was used to keep the elite strategy and select the global extremum in this algorithm. Meanwhile, the dynamic non-uniform mutation operator was introduced to maintain the diversity of particles, slow the speed of convergence and avoid premature convergence. The two-objective optimal operation model of Zhanghe reservoir was established by taking both minimum irrigation water shortage and maximum electric energy production as objective functions. The MOPSO-CD algorithm was applied to solve this model. Example calculations show that the algorithm could get enough non-inferior solutions and much more uniform fronts.

关 键 词:多目标优化 拥挤距离 基于拥挤距离的多目标粒子群优化算法 动态非均匀变异 漳河水库 

分 类 号:TV697.1[水利工程—水利水电工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象