检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地质大学(武汉)机械与电子信息学院,武汉430074 [2]华中科技大学图像识别与人工智能研究所,武汉430074
出 处:《计算机工程与应用》2013年第8期17-21,155,共6页Computer Engineering and Applications
基 金:国家自然科学基金(No.61271274;No.41202232);中央高校基本科研业务费专项资金资助项目(No.CUGL110225)
摘 要:针对深空背景下的红外弱小目标检测,提出了一种基于聚类分析的目标检测方法,该方法将经过背景抑制的连续几帧图像构造组合帧,基于目标的运动特性,对分割后的组合帧进行聚类分析,从而检测到弱小目标并同时获得目标运动轨迹,再对检测结果进行聚类检验,从而去除虚假目标,降低虚警率。实验结果表明该算法对多目标的检测有较高的鲁棒性,且相对于传统的小目标检测算法有更高的检测率和较好的实时性。In order to detect small targets in deep space, a detecting algorithm based on cluster analysis is proposed. The approach forms a composite frame by a few of infrared images which have been preprocessed, and the composite frame is clustered after it is segmented based on moving targets feature. Accordingly, small targets and the trajectories of moving targets can be obtained. The false positive objects are deleted by followed validation process. Experimental results show that this method is robust in small targets detection. Compared with some traditional methods, good performance can be obtained in detection rate and detection efficiency.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30