检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《计算机工程与应用》2013年第8期198-202,208,共6页Computer Engineering and Applications
基 金:上海海事大学科研基金
摘 要:针对粒子群算法容易陷入局部最优解,将遗传算法的交叉和变异引入到粒子群算法中。根据不同的收敛情况及交叉和变异的特点使用两种算子,提出一种既能预防陷入局部最优解又能跳出局部最优解的混合粒子群算法,将该算法应用到投影寻踪动态聚类模型中来优化投影方向,得到近似最好的投影寻踪动态聚类模型。实验证明,相对于原始粒子群算法,该方法可以有效地避免陷入局部最优解,而且投影效果也更好。Because particle swarm algorithm easily gets into local optimal solution, crossover and mutation of genetic algorithm will be introduced into particle swarm algorithm. According to different situation and the characters of crossover and mutation to use these two operators, this paper gives an improved particle swarm algorithm which can not only guard against into local optimal solution, but can jump out of local optimal solution. By using this improved algorithm into projection pursuit dynamic clustering model, a best projection pursuit dynamic clustering model can be found. Compared with original algorithm, experiments show that this method can make particle swarm algorithm avoid getting into local optimal solution.
分 类 号:TP39[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40