检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学港口海岸与近海工程学院,南京210098 [2]西门子工业软件(上海)有限公司,上海200082 [3]河海大学工程力学系,南京210098
出 处:《工程力学》2013年第4期42-46,58,共6页Engineering Mechanics
基 金:国家自然科学基金项目(50978083);中央高校基本科研业务费专项资金项目(2010B02814)
摘 要:该文将扩展有限元方法应用到几何非线性及断裂力学问题中,并研制开发了扩展有限元Fortran程序。扩展有限元法其计算网格与不连续面相互独立,因此模拟移动的不连续面时无需对网格进行重新剖分。该文推导了几何非线性扩展有限元法的公式,在常规有限元位移模式中,基于单位分解的思想加进一个阶跃函数和二维渐近裂尖位移场,反映裂纹处位移的不连续性,并用2个水平集函数表示裂纹;采用拉格朗日描述方程建立了有限变形几何非线性扩展有限元方程;采用多点位移外推法计算裂纹应力强度因子并通过最小二乘法拟合得到更精确的结果。最后给出的大变形算例表明该文提出的几何非线性的断裂力学扩展有限元方法和相应的计算机程序是合理可行的,而且对于含裂纹及裂纹扩展的问题,扩展有限元法优于传统的有限元法。A extended finite element(X-FEM) method and corresponding Fortran code are developed in the modeling and simulation for nonlinear geometry and fracture mechanics problems.X-FEM can model a domain without explicitly meshing the crack surface.This method can treat an arbitrary crack independent of the mesh and crack growth.The X-FEM formulas with nonlinear geometry are deduced.In order to model the crack discontinuity,a Heaviside step function and a two-dimensional asymptotic crack-tip displacement field are added to the traditional finite element approximation for the local enrichment based on the theory of partition of unity.The crack is described by two level set functions.The X-FEM computational algorithm is presented in the framework of Lagrangian description in order to model the arbitrary discontinuities in large deformations.The stress intensifying the factors of a crack are calculated by using the multi-point displacement extrapolation method and least square fitting.Finally,a numerical example is presented to demonstrate the accuracy and efficiency of the X-FEM and the FORTRAN code in large deformation crack problems.It is found that X-FEM is superior to the traditional FEM in the modeling and simulation of crack being and crack growth program.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.121