检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:万建武[1,2] 杨明[1,2] 吉根林[2] 陈银娟[2]
机构地区:[1]南京师范大学数学科学学院,江苏南京210023 [2]南京师范大学计算机科学与技术学院,江苏南京210023
出 处:《软件学报》2013年第5期1155-1164,共10页Journal of Software
基 金:国家自然科学基金(60873176;61272222;61003116);江苏省自然科学基金(BK2011782;BK2011005);江苏省创新基金(CXZZ12_0386)
摘 要:传统的局部保持降维方法追求最低的识别错误率,即假设每一类的错分代价都是相同的.这个假设在真实的人脸识别应用中往往是不成立的.人脸识别是一个多类的代价敏感和类不平衡问题.例如,在人脸识别的门禁系统中,将入侵者错分成合法者的损失往往高于将合法者错分成入侵者的损失.因此,每一类的错分代价是不同的.另外,如果任一类合法者的样本数少于入侵者的样本数,该类合法者和入侵者就是类别不平衡的.为此,将错分代价融入到局部保持的降维模型中,提出了一种错分代价最小化的局部保持降维方法.同时,采用加权策略平衡了各类样本对投影方向的贡献.在人脸数据集AR,PIE,Extended Yale B上的实验结果表明了该算法的有效性.Conventional locality preserving projection aims to minimize recognition error rate, implicitly assuming the losses of different misclassifications are the same. However, this may not hold in many real world face recognition applications. Face recognition is a multiclass cost sensitive and class imbalance task. For example, it will be troublesome if a gallery person is misclassified as an impostor, but it will be much more costly if an impostor is misclassified as a gallery person. Consequently, different kinds of mistakes will lead to different losses. Moreover, the examples of gallery person from any class are fewer than examples of the impostor, which is referred to as class imbalance. For that, this paper integrates the misclassification costs into an objective function of the locality preserving projection and proposes a cost sensitive locality preserving projection that minimizes the misclassification costs. Simultaneously, a weight strategy is used to balance the contribution of each class to the projection. Experimental results on AR, PIE, Extended Yale B datasets demonstrate the superiority of the proposed method.
关 键 词:局部保持降维 人脸识别 代价敏感学习 类不平衡 多类
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222