检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:邸玉贤[1] 朱宽军[1] 刘龙[1] 刘彬[1] 刘操兰[1]
机构地区:[1]中国电力科学研究院,北京市西城区102401
出 处:《中国电机工程学报》2013年第13期157-164,共8页Proceedings of the CSEE
摘 要:输电线路连续档分裂导线静平衡构形和固有频率的准确计算,对于线路设计、导线结构的动特性分析以及舞动分析计算都是很重要的。采用柔索模型,应用Hamilton原理推导了导线作大幅运动的运动微分方程,并得到了导线静态构形的计算公式。结合间隔棒对导线的约束关系,推导建立了基于位移增量有限元模型的单元质量和刚度矩阵;并应用获得的公式体系对实际三档分裂导线进行了静态构形和自由振动计算,计算实例证明了所用方法的可靠性及有效性。It is important to calculate accurately the static configuration and natural frequency of bundle conductor of multi-span transmission lines for the line design, dynamic behavior determination and galloping prediction. There are no effective static analysis methods for such conductor structures. Based on flexible cable model, the governing differential equation for conductor large amplitude motion and the calculation formula for static configuration were derived by use of Hamilton principle. And on the basis of the incremental displacement finite element model, the mass matrix and stiffness matrix were obtained in consideration of the constraining conditions between conductors and spacers. In the end, the numerical results of static computation and calculation of free vibration for a triple-span power line structure with four bundle conductors model show the efficiency of the method in this paper. The computational results indicate that the method is effective and reliable.
分 类 号:TM75[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28