机构地区:[1]Department of Geology,Centre of Advanced Studies,University of Delhi,Delhi 110007,India
出 处:《Geoscience Frontiers》2013年第3期321-340,共20页地学前缘(英文版)
基 金:funded by DST,Government of India in the form of Transect Project(ESS/16/334/2007/dated 14-10-2008) and DU R & D Programme
摘 要:We present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Naga- mangala belt) and further northwest in Nuggihafli belt and Kalyadi belt we speculate ca. 3.2-3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influ- ence of post-magmatic alteration and[or contamination. About 1[3 of studied komatiites show AI- depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd]Yb)N ratios show low CaO/AI203 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaOJAI203 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (〉 1.0), CaO/AI203 (〉1.0), Al203frio2 (〈18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (GdIYb)N (〈1.0), CaO/AI203 (〈0.9), higher A1203]TiO2 (〉18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observedWe present field, petrographic, major and trace element data for komatiites and komatiite basalts from Sargur Group Nagamangala greenstone belt, western Dharwar craton. Field evidences such as crude pillow structure indicate their eruption in a marine environment whilst spinifex texture reveals their komatiite nature. Petrographic data suggest that the primary mineralogy has been completely altered during post-magmatic processes associated with metamorphism corresponding to greenschist to lower amphibolite facies conditions. The studied komatiites contain serpentine, talc, tremolite, actinolite and chlorite whilst tremolite, actinolite with minor plagioclase in komatiitic basalts. Based on the published Sm-Nd whole rock isochron ages of adjoining Banasandra komatiites (northern extension of Naga- mangala belt) and further northwest in Nuggihafli belt and Kalyadi belt we speculate ca. 3.2-3.15 Ga for komatiite eruption in Nagamangala belt. Trace element characteristics particularly HFSE and REE patterns suggest that most of the primary geochemical characteristics are preserved with minor influ- ence of post-magmatic alteration and[or contamination. About 1[3 of studied komatiites show AI- depletion whilst remaining komatiites and komatiite basalts are Al-undepleted. Several samples despite high MgO, (Gd]Yb)N ratios show low CaO/AI203 ratios. Such anomalous values could be related to removal of CaO from komatiites during fluid-driven hydrothermal alteration, thus lowering CaOJAI203 ratios. The elemental characteristics of Al-depleted komatiites such as higher (Gd/Yb)N (〉 1.0), CaO/AI203 (〉1.0), Al203frio2 (〈18) together with lower HREE, Y, Zr and Hf indicate their derivation from deeper upper mantle with minor garnet (majorite?) involvement in residue whereas lower (GdIYb)N (〈1.0), CaO/AI203 (〈0.9), higher A1203]TiO2 (〉18) together with higher HREE, Y, Zr suggest their derivation from shallower upper mantle without garnet involvement in residue. The observed
关 键 词:Komatiites Dharwar craton Geochemistry Greenstone volcanism Mantle evolution
分 类 号:P542.5[天文地球—构造地质学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...