Effect of AB_(2-)based alloy addition on structure and electrochemical properties of La_(0.5)Pr-(0.2)Zr_(0.1)Mg_(0.2)Ni_(2.75)Co_(0.45)Fe_(0.1)Al_(0.2) hydrogen storage alloy  被引量:2

Effect of AB_(2-)based alloy addition on structure and electrochemical properties of La_(0.5)Pr-(0.2)Zr_(0.1)Mg_(0.2)Ni_(2.75)Co_(0.45)Fe_(0.1)Al_(0.2) hydrogen storage alloy

在线阅读下载全文

作  者:卢照 覃铭 蒋卫卿 卿培林 刘淑辉 

机构地区:[1]Department of Physics and Electronic Engineering,Baise University [2]College of Physics Science and Technology,Guangxi University

出  处:《Journal of Rare Earths》2013年第4期386-394,共9页稀土学报(英文版)

基  金:supported by the Natural Science Foundation of Guangxi (2011GXNSFA018034);the Program for Characteristic Professionalism and Integrated Curriculum Construction in Colleges of Guangxi (GXTSZY024)

摘  要:TheLa0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(M0 and Zr0.65Ti0.35(Mn0.2V0.2Cr0.15Ni0.45)l.76 (M2) hydrogen storage alloys were prepared by inductive melting. In addition, the M1+30 wt.%M2 composites were successively prepared by using high-energy ball milling technology. From the X-ray diffraction (XRD) analysis, it was found that M1 and M2 alloys still retained their respective main phases in the MI+30 wt.%M2 composites. The scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicated that the decrease in discharge capacity of MI and M2 alloy electrodes was ascribed to the oxidation-dissolution of La, Pr, Mg and Ti, Mn, V, Cr active elements, respectively. The electrochemical studies showed that the M1+30 wt.%M2 composite electrode ball milling for 5 rain exhibited excellence cyclic stability (92.3%) after 80 charge/discharge cycles, which was higher than 77.7 % and 85.6% of MI and M2 alloy electrodes, respectively. Moreover, at the discharge current density of 1200 mA/g, the high rate dis- charge ability (HRD) of the M1+30 wt.%M2 composite electrode increased from 61.5% (5 rain) to 70.3% (10 rain). According to the linear polarization, Tafel polarization and cyclic voltammograms (CV), the electrochemical kinetics of hydrogen reaction on the sur- face of the electrode and hydrogen diffusion rate in the bulk of alloy were also improved in the ML+30 wt.%M2composite with in- creasing ball milling time.TheLa0.5Pr0.2Zr0.1Mg0.2Ni2.75Co0.45Fe0.1Al0.2(M0 and Zr0.65Ti0.35(Mn0.2V0.2Cr0.15Ni0.45)l.76 (M2) hydrogen storage alloys were prepared by inductive melting. In addition, the M1+30 wt.%M2 composites were successively prepared by using high-energy ball milling technology. From the X-ray diffraction (XRD) analysis, it was found that M1 and M2 alloys still retained their respective main phases in the MI+30 wt.%M2 composites. The scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) indicated that the decrease in discharge capacity of MI and M2 alloy electrodes was ascribed to the oxidation-dissolution of La, Pr, Mg and Ti, Mn, V, Cr active elements, respectively. The electrochemical studies showed that the M1+30 wt.%M2 composite electrode ball milling for 5 rain exhibited excellence cyclic stability (92.3%) after 80 charge/discharge cycles, which was higher than 77.7 % and 85.6% of MI and M2 alloy electrodes, respectively. Moreover, at the discharge current density of 1200 mA/g, the high rate dis- charge ability (HRD) of the M1+30 wt.%M2 composite electrode increased from 61.5% (5 rain) to 70.3% (10 rain). According to the linear polarization, Tafel polarization and cyclic voltammograms (CV), the electrochemical kinetics of hydrogen reaction on the sur- face of the electrode and hydrogen diffusion rate in the bulk of alloy were also improved in the ML+30 wt.%M2composite with in- creasing ball milling time.

关 键 词:La-Mg-Ni-based alloy Zr-based alloy electrochemical properties rare earths 

分 类 号:TG139.7[一般工业技术—材料科学与工程] TG132.271[金属学及工艺—合金]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象