Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles  被引量:17

Trophallaxis network control approach to formation flight of multiple unmanned aerial vehicles

在线阅读下载全文

作  者:DUAN HaiBin LUO QiNan YU YaXiang 

机构地区:[1]Science and Technology on Aircraft Control Laboratory,School of Automation Science and Electrical Engineering,Beihang University

出  处:《Science China(Technological Sciences)》2013年第5期1066-1074,共9页中国科学(技术科学英文版)

基  金:supported by the National Natural Science Foundation of China(Grant Nos.61273054,60975072 and 60604009);the National Basic Research Program of China("973"Project)(Grant No.2013CB035503);the Program for New Century Excellent Talents in University of China(Grant No.NCET-10-0021);the Aeronautical Foundation of China(Grant No.20115151019)

摘  要:A novel network control method based on trophaUaxis mechanism is applied to the formation flight problem for multiple un- manned aerial vehicles (UAVs). Firstly, the multiple UAVs formation flight system based on trophallaxis network control is given. Then, the model of leader-follower formation flight with a virtual leader based on trophallaxis network control is pre- sented, and the influence of time delays on the network performance is analyzed. A particle swarm optimization (PSO)-based formation controller is proposed for solving the leader-follower formation flight system. The proposed method is applied to five UAVs for achieving a 'V' formation, and a series of experimental results show its feasibility and validity. The proposed control algorithm is also a promising control strategy for formation flight of multiple unmanned underwater vehicles (UUVs), unmanned ground vehicles (UGVs), missiles and satellites.

关 键 词:unmanned aerial vehicle (UAV) trophaHaxis network control formation flight particle swarm optimization (PSO) 

分 类 号:V279[航空宇航科学与技术—飞行器设计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象