二元可燃混合气体爆炸上限的理论预测  被引量:1

Prediction of Upper Flammability Limits of Binary Fuel Mixtures

在线阅读下载全文

作  者:李国梁[1] 潘勇[1] 蒋军成[1] 李高艳[1] 

机构地区:[1]南京工业大学城市建设与安全工程学院,南京210009

出  处:《燃烧科学与技术》2013年第2期175-180,共6页Journal of Combustion Science and Technology

基  金:国家自然科学基金资助项目(20976081;21006045);江苏省自然科学基金资助项目(BK2010554)

摘  要:确定了影响可燃气体爆炸上限的特征理化因素,如化学计量浓度、临界压力和燃烧热等,构建了混合物理化参数来表征混合气体的理化特征.将这些参数作为输入变量,分别应用多元线性回归和多元非线性回归方法对二元可燃混合气体爆炸上限与上述混合物理化参数之间的内在相关性进行研究,建立了根据混合物理化参数预测二元可燃混合气体爆炸上限的数学模型.两种方法对训练集的预测平均绝对误差分别为2.39%和1.272%;对测试集的预测平均绝对误差分别为2.185%和1.888%.结果表明,两种模型爆炸上限的预测值与文献值均符合较好,在可接受误差范围之内.该方法的提出为工程上提供了一种预测二元可燃混合气体爆炸上限的新方法.The main affecting factors of the upper flammability limits (UFL) of fuel mixtures were determined in this paper, such as fuel stoichiometric concentration, critical pressure, heat of combustion. Based on the above affecting factors, the physico-chemical parameters which characterize fuel mixtures were constructed. And then, the quantita- tive relationship between those parameters and the upper flammability limits of binary fuel mixtures was studied by using multiple linear regression and multiple nonlinear regression method, respectively, and the upper flammability limit prediction model of binary fuel mixtures was established. For the training set, the average absolute deviations between the experimental and predicted values of upper flammability limit were 2.39% by linear regression analysis method and 1.272% by nonlinear regression method, while for the testing set, they were 2.185% and 1.888%, respectively. The results showed that the predicted upper flammability limits were in good agreement with the experi- mental data by both linear regression analysis method and nonlinear regression method. The paper provides a new method for predicting UFL of binary fuel mixtures in engineering.

关 键 词:二元可燃 混合气体 爆炸上限 理化参数 预测模型 

分 类 号:O643.2[理学—物理化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象