检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:徐立鹏[1] 葛良全[1] 谷懿[1] 刘敏[1] 张庆贤[1] 李飞[1] 罗斌[1]
机构地区:[1]成都理工大学,四川成都610059
出 处:《光谱学与光谱分析》2013年第5期1392-1396,共5页Spectroscopy and Spectral Analysis
基 金:国家(863计划)项目(2012AA061803);国家自然科学基金项目(41074093)资助
摘 要:为实现地质样品中元素含量的准确预测,提出了基于主成分分析(PCA)的改进型BP神经网络模型。采用X荧光光谱法,对新疆西天山地质样品中Fe,Ti,V,Pb和Zn等元素进行测量,将得到的X荧光计数作为输入变量,应用该模型对未知地质样品中Fe和Ti元素进行定量预测。结果表明:主成分分析与改进型BP神经网络模型取得了较好的预测效果,预测结果与化学分析值的相对误差小于3%,为地质样品元素含量预测提供了一种新型有效的方法。Aiming at forecasting elemental contents in geological samples accurately, a principal component analysis and im- proved BP (PCA-BP) neural network theory is proposed in the present work. The samples from west Tianshan were measured through X-ray fluorescence measurement method, and the X-Ray fluorescence counts of each element such as Fe, Ti, V, Pb, Zn, etc. were input to the PCA-BP neural network as input variables to forecast Fe and Ti contents in uncertified geological sam- ples quantitatively. The results show that the PCA-BP neural network can give an ideal result, and the relative error between the forecast data and chemical analysis data is less than 3 0%. This method provides a new and effective approach to forecasting ele- mental contents in geological samples.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.151