检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:郭念国[1]
出 处:《统计与决策》2013年第8期25-28,共4页Statistics & Decision
基 金:河南工业大学高层次人才基金资助项目(2011BS041);河南省教育厅科学技术研究重点项目(12A110006)
摘 要:广义线性模型作为分类费率厘定的重要工具,面临着如何选择损失变量分布的问题,而且对于存在巨额索赔的数据费率因子的显著性判别往往不具有稳健性。文章利用中位数回归模型弥补了广义线性模型的这些不足,结合实际数据对费率因子的各水平进行显著性判别,并与其他常用损失模型的拟合结果进行比较。结果表明,中位数回归模型在费率因子的显著性判别方面更具有客观性和稳健性。
分 类 号:O212.1[理学—概率论与数理统计] F224.0[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.191.209.202