A new simpler rotation/curvature correction method for Spalart-Allmaras turbulence model  被引量:8

A new simpler rotation/curvature correction method for Spalart–Allmaras turbulence model

在线阅读下载全文

作  者:Zhang Qiang Yang Yong 

机构地区:[1]National Key Laboratory of Science and Techniques on Aerodynamic Design and Research, Northwestern Polytechnical University

出  处:《Chinese Journal of Aeronautics》2013年第2期326-333,共8页中国航空学报(英文版)

基  金:supported by National Natural Science Foundation of China (No. 11002117)

摘  要:A new and much simpler rotation and curvature effects factor, which takes the form of Richardson number suggested by Hellsten originally for SST k-ω model, is presented for Spalart and Shur's rotation and curvature correction in the context of Spalart-Allmaras (SA) turbulence model. The new factor excludes the Lagrangian derivative of the strain rate tensor that exists in the SARC model, resulting in a simple, efficient and easy-to-implement approach for SA turbulence model (denoted as SARCM) to account for the effects of system rotation and curvature, techniquely. And then the SARCM is tested through turbulent curved wall flows: one is the flow over a zeropressure-gradient curved wall and the other is the channel flow in a duct with a U-turn. Predictions of the SARCM model are compared with experimental data and with the results obtained using original SA and SARC models. The numerical results show that SARCM can predict the rotation-curvature effects as accurately as SARC, but considerably more efficiently. Additionally, the accuracy of SARCM might strongly depend on the rotation-curvature model constants. Suggesting values for those constants are given, after some trials and errors.A new and much simpler rotation and curvature effects factor, which takes the form of Richardson number suggested by Hellsten originally for SST k-ω model, is presented for Spalart and Shur's rotation and curvature correction in the context of Spalart-Allmaras (SA) turbulence model. The new factor excludes the Lagrangian derivative of the strain rate tensor that exists in the SARC model, resulting in a simple, efficient and easy-to-implement approach for SA turbulence model (denoted as SARCM) to account for the effects of system rotation and curvature, techniquely. And then the SARCM is tested through turbulent curved wall flows: one is the flow over a zeropressure-gradient curved wall and the other is the channel flow in a duct with a U-turn. Predictions of the SARCM model are compared with experimental data and with the results obtained using original SA and SARC models. The numerical results show that SARCM can predict the rotation-curvature effects as accurately as SARC, but considerably more efficiently. Additionally, the accuracy of SARCM might strongly depend on the rotation-curvature model constants. Suggesting values for those constants are given, after some trials and errors.

关 键 词:ACCURACY COMPUTATION CURVATURE IMPROVEMENT Robust ROTATION Strain rate tensor Turbulence model 

分 类 号:V211[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象