检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:章浩燕[1] 朱克强[1] 张洋[1] 张天宇[1] 徐为兵[1] 王自发[1]
出 处:《舰船科学技术》2013年第4期35-39,共5页Ship Science and Technology
基 金:宁波市服务型教育重点转移建设资助(sfwxzdzy200904);宁波市学科项目(szxl1066);浙江省新苗人才计划项目(2012R405038);长江学者和创新团队发展计划资助项目(IRT0734);国家自然科学基金资助项目(11272060;10872098;10572063)
摘 要:对拖缆二维几何形态的研究,是拖曳线几何形态研究中的基础部分。本文考虑了重力、浮力、流体拖曳力对拖缆几何形态的影响,并假设拖曳线和拖体在同一个平面内运动,由此依次讨论了一般拖缆的二维几何形态、等浮力缆索二维几何形态,并通过龙格-库塔法,用Matlab给出这2种情况下缆索的几何形态图。对拖缆的二维几何形态图线的分析可得知,拖缆的张力只与沉深有关,且随着沉深的增加而减小。这些结论有助于今后对拖缆拖曳中几何形态的研究。The analysis of the two-dimensional towing cable, is basic part of the research on the towing cable. In this paper, it' s assumed that the cable is completely flexible and inextensible and that the action of the submersible and the cable is in the same plane. In the meantime, the effects of cable-weight, cable-buoyancy,fluid drag and the forces exerted on the cable by the submersible are considered so that analysis is made for the two-dimensional geometries of the towing cable especially the case of neutral buoyancy. In order to get a preciser analytical solution, we use Runge-kutta method through Matlab to integrate set of differential equations. From the analysis of the figures we can achieve some conclusions, especially that the cable tension is depth dependent only. When the depth of water is increasing, the cable tensions are reducing. All these conclusions contribute to the research on the dynamic of towing cable.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28