检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:林珂[1] 胡乃银[1] 周晓国[1] 刘世林[1] 罗毅[1,2]
机构地区:[1]中国科学技术大学合肥微尺度物质科学国家实验室筹,化学物理系,合肥230026 [2]瑞典皇家理工学院生物工程学院理论化学系,斯德哥尔摩S-10691
出 处:《Chinese Journal of Chemical Physics》2013年第2期127-132,I0003,共7页化学物理学报(英文)
基 金:This work was supported by the National Key Basic Research Special Foundation (No.2013CB834602 and No.2010CB923300) and the National Natural Science Foundation of China (No.20925311, No.21273211, and No.21103158).
摘 要:The structure difference between light and heavy liquid water has been systematically in- vestigated by high precision Raman spectroscopy over the temperature range of 5-85℃. Distinct difference between the Raman spectral profiles of two different liquid waters is clearly observed. By analyzing the temperature-dependent Raman spectral contour using global fitting procedure, it is found that the micro-structure of heavy water is more ordered than that of light water at the same temperature, and the structure difference between the light and heavy water decreases with the increase of the temperature. The temperature off- set, an indicator for the structure difference, is determined to vary from 28 ℃ to 18 ℃ for the low-to-high temperature. It indicates that quantum effect is significantly not only at low temperature, but also at room temperature. The interaction energy among water molecules has also been estimated from van't Hoff's relationship. The detailed structural information should help to develop reliable force fields for molecular modeling of liquid water.
关 键 词:Light and heavy water Quantum effect Raman spectra STRUCTURE Temperature offset
分 类 号:O56[理学—原子与分子物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.223