γ-可图序列与γ-完全子图  被引量:1

r-Graphic Sequences and r-Complete Subgraphs

在线阅读下载全文

作  者:尹建华[1] 

机构地区:[1]海南大学信息学院数学系,海口570228

出  处:《数学学报(中文版)》2013年第3期369-380,共12页Acta Mathematica Sinica:Chinese Series

基  金:国家自然科学基金资助项目(11161016,11261015,10861006)

摘  要:一个r-图是一个无环的无向图,其中任何两个顶点之间至多被r条边连接.一个m+1个顶点的r-完全图,记为K_(m+1)^((r)),是一个m+1个顶点的r-图,其中任何两个顶点之间恰好被r条边连接.一个非增的非负整数序列π=(d_1,d_2,…,d_n)称为是r-可图的如果它是某个n个顶点的r-图的度序列.一个r-可图序列π称为是蕴含(强迫)K_(m+1)^((r))可图的如果π有一个实现包含K_(m+1)^((r))作为子图(π的每一个实现包含K_(m+1)^((r))作为子图).设σ(K_(m+1)^((r)),n)(τ(K_(m+1)^((r)),n))表示最小的偶整数t,使得每一个r-可图序列π=(d_1,d_2,…,d_n)具有∑_(i=1)~n d_i≥t是蕴含(强迫)K_(m+1)^((r))-可图的.易见,σ(K_(m+1)^((r)),n)是Erds等人的一个猜想从1-图到r-图的扩充且τ(K_(m+1)^((r)),n)是经典Turan定理从1-图到r-图的扩充.本文给出了蕴含K_(m+1)^((r))的r-可图序列的两个简单充分条件.此两个条件包含了Yin和Li在[Discrete Math.,2005,301:218-227]中的两个主要结果和当n≥max{m^2+3m+1-[(m^2+m)/r],2m+1+[m/r]]}时,σ(K_(m+1)^((r)),n)之值.此外,我们还确定了当n≥m+1时,τ(K_(m+1)^((r)),n)之值.An r-graph is a loopless undirected graph in which no two vertices are joined by more than r edges. An r-complete graph on m + 1 vertices, denoted by K(τ)m+1, is an r-graph on m + 1 vertices in which each pair of vertices is joined by exactly r edges. A non-increasing sequence π = (d1, d2,..., dn) of nonnegative integers is said to be r-graphic if it is the degree sequence of some r-graph on n vertices. An r-graphic sequence π is said to be potentially (resp. forcibly) K(τ)m+1-graphic if π has a realization containing K(τ)m+1 as a subgraph (resp. every realization of π contains K(τ)m+1 as a subgraph). Let σ( K(τ)m+1, n) (resp. K(τ)m+1, n)) denote the smallest even integer t n such that each r-graphic sequence π = (d1, d2,..., dn) with ∑i=1ndi≥ t is potentially (resp. forcibly) K(τ)m+1-graphic. Clearly,σ( K(τ)m+1, n) is an extension from 1-graph to r-graph of a conjecture due to Erdos et al and τ(K(τ)m+1,n) is an extension from 1-graph to r-graph of the classical Turan's theorem. In this paper, we give two simple sufficient conditions for an r-graphic sequence to be potentially K(τ)m+1-graphic, which imply two main results due to Yin and Li (Discrete Math., 2005, 301: 218-227) and the value of σ(K(τ)m+1, n) for n 〉 max{m2+3m+1-[m2+m/τ],2m+1+[m/τ]}. Moreover, we also determine the value of τ(K(τ)m+1, n) for n 〉 m + 1.

关 键 词:r-图 r-完全图 r-可图序列 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象