Production of ^(87)Rb Bose Einstein condensates in a hybrid trap  

Production of ^(87)Rb Bose Einstein condensates in a hybrid trap

在线阅读下载全文

作  者:段亚凡 姜伯楠 孙剑芳 刘亢亢 徐震 王育竹 

机构地区:[1]Key Laboratory for Quantum Optics,Shanghai Institute of Optics and Fine Mechanics,Chinese Academy of Sciences

出  处:《Chinese Physics B》2013年第5期417-420,共4页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No. 10974211);the National Basic Research Program of China (Grant No. 2011CB921504);the Research Project of Shanghai Science and Technology Commission, China (Grant No. 09DJ1400700)

摘  要:We report a rapid evaporative cooling method using a hybrid trap which is composed of a quadrupole magnetic trap and a one-beam optical dipole trap. It contains two kinds of evaporative coolings to reach the quantum degeneracy: initial radio-frequency (RF) enforced evaporative cooling in the quadrupole magnetic trap and further runaway evaporative cooling in the optical dipole trap. The hybrid trap does not require a very high power laser such as that in the traditional pure optical trap, but still has a deep trap depth and a large trap volume, and has better optical access than the normal magnetic trap like the quadrupole-Ioffe-configuration (QUIC) cloverleaf trap. A high trap frequency can be easily realized in the hybrid trap to enhance the elastic collision rate and shorten the evaporative cooling time. In our experiment, pure Bose-Einstein condensates (BECs) with about 1 x 105 atoms can be realized in 6 s evaporative cooling in the optical dipole trap.We report a rapid evaporative cooling method using a hybrid trap which is composed of a quadrupole magnetic trap and a one-beam optical dipole trap. It contains two kinds of evaporative coolings to reach the quantum degeneracy: initial radio-frequency (RF) enforced evaporative cooling in the quadrupole magnetic trap and further runaway evaporative cooling in the optical dipole trap. The hybrid trap does not require a very high power laser such as that in the traditional pure optical trap, but still has a deep trap depth and a large trap volume, and has better optical access than the normal magnetic trap like the quadrupole-Ioffe-configuration (QUIC) cloverleaf trap. A high trap frequency can be easily realized in the hybrid trap to enhance the elastic collision rate and shorten the evaporative cooling time. In our experiment, pure Bose-Einstein condensates (BECs) with about 1 x 105 atoms can be realized in 6 s evaporative cooling in the optical dipole trap.

关 键 词:ultra-cold atoms Bose-Einstein condensates optical dipole trap hybrid trap 

分 类 号:O431.2[机械工程—光学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象