Near-infrared downconversion in Eu^(2+) and Pr^(3+) co-doped KSrPO_4 phosphor  

Near-infrared downconversion in Eu^(2+) and Pr^(3+) co-doped KSrPO_4 phosphor

在线阅读下载全文

作  者:孙家跃 孙翊宁 朱吉成 曾军辉 杜海燕 

机构地区:[1]School of Science,Beijing Technology and Business University

出  处:《Chinese Physics B》2013年第5期527-531,共5页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China (Grant No. 20976002);the Beijing Natural Science Foundation, China (Grant No. 2122012);the Special Funding of the Ministry of Education of Guangdong Province, China (Grant No. 2011B090400100)

摘  要:A novel near-infrared (NIR) downconversion (DC) phosphor KSrPO4:Eu2+, Pr3+ is synthesized by the conventional high temperature solid-state reaction. The Eu2+ acts as an efficient sensitizer for Pr3+ in the KSrPO4 host. With broad- band near-ultraviolet light excitation induced by the 4f→5d transition of Eu2+, the characteristic NIR emission of Pr3+, peaking at 974 nm and 1019 nm due to 3po →1G4 and 1G4→3H4 transitions, is generated as a result of the energy transfer from Eu2+ to Pr3+. The luminescence spectra in both the visible and the NIR regions and the decay lifetime curves of Eu2+ prove the energy transfer from Eu2+ to Pr3+. This Eu2+ and Pr3+ co-doped KSrPO4 phosphor may be a promising candidate to modify the spectral mismatch behavior of crystalline solar cells and sunlight.A novel near-infrared (NIR) downconversion (DC) phosphor KSrPO4:Eu2+, Pr3+ is synthesized by the conventional high temperature solid-state reaction. The Eu2+ acts as an efficient sensitizer for Pr3+ in the KSrPO4 host. With broad- band near-ultraviolet light excitation induced by the 4f→5d transition of Eu2+, the characteristic NIR emission of Pr3+, peaking at 974 nm and 1019 nm due to 3po →1G4 and 1G4→3H4 transitions, is generated as a result of the energy transfer from Eu2+ to Pr3+. The luminescence spectra in both the visible and the NIR regions and the decay lifetime curves of Eu2+ prove the energy transfer from Eu2+ to Pr3+. This Eu2+ and Pr3+ co-doped KSrPO4 phosphor may be a promising candidate to modify the spectral mismatch behavior of crystalline solar cells and sunlight.

关 键 词:optical properties cooperative energy transfer DOWNCONVERSION 

分 类 号:O482.31[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象