基于自适应稀疏表示的光谱去噪和基线校正  被引量:2

Research on spectral pretreatment based on adaptive sparse representation

在线阅读下载全文

作  者:朱超[1] 鲁昌华[1,2] 杨凯[1] 陈晓婷[1] 

机构地区:[1]合肥工业大学计算机与信息学院,安徽合肥230009 [2]中国科学院安徽光学精密机械研究所,安徽合肥230031

出  处:《微型机与应用》2013年第9期54-56,59,共4页Microcomputer & Its Applications

基  金:国家"863"重点资助项目(2007AA061504;2009AA063006)

摘  要:通过分析光谱信号特征,结合稀疏表示理论,提出了一种自适应稀疏表示的光谱去噪方法。该方法对信号分段构造学习样本,分别用OMP法和K-SVD法初始化和过训练原子库。将光谱信号在新的原子库上进行自适应稀疏分解,实现光谱信号去噪。利用信噪比(SNR)、均方根误差(RMSE)、波形相似度(NCC)、峰值平均相对误差(AREPV)四个指标来评价去噪效果。仿真实验结果表明,与小波软阈值和小波硬阈值方法相比,该方法能更好地同时消除噪声和基线漂移。According to the characteristics of the spectrum, combining with the sparse representation theory, a denoising method based on adaptive sparse representation is proposed in this paper. This method deride signal into several segments to construct a learning sample, initialize and train atomic library by OMP and K-SVD method. Realize spectrum denoising via adaptive sparse representation the spectrum based on the new dictionary. This paper use four indicators, including signal-to-noise ratio (SNR), the root mean squared error (RMSE), the waveform similarity (NCC) and the peak average relative error (AREPV) to evaluate the denoising effect. The simulation results show that: compared with soft and hard threshold method, method based on sparse representation can better eliminate noise and baseline drift at the same time.

关 键 词:光谱预处理 自适应稀疏表示 去噪 基线校正 

分 类 号:F407.63[经济管理—产业经济]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象