检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]太原理工大学计算机科学与技术学院,山西太原030024
出 处:《计算机工程与设计》2013年第5期1691-1694,1699,共5页Computer Engineering and Design
基 金:山西省科技攻关基金项目(20080322008);山西省自然科学基金项目(2008011039)
摘 要:传统k-means算法随机选取初始聚类中心使聚类结果不稳定,诸多优化算法的时间复杂度较高,为了提高聚类稳定性并降低时间复杂度,提出了基于个体轮廓系数自适应地选取优秀样本以确定初始聚类中心的改进k-means算法。该算法多次调用传统k-means算法聚类,根据k个类中心的个体轮廓系数以及各样本与类中心的距离,自适应地选取优秀样本,求其均值作为初始聚类中心。在多个UCI数据集上的实验表明,该算法聚类时间短,具有较高的轮廓系数和准确率。The initial centers of the traditional k-means algorithm are randomly selected, so that the clustering results are uncertain. Many improved algorithms have a high time complexity. In order to enhance stability of clustering and reduce the time complexity, improved k-means algorithm which selects good samples adaptively based on individual silhouette coefficient to get initial centers is presented. Traditional k-means algorithm is used for some times to cluster data according to, the individual silhouette coefficient of k class centers and the distance between samples and class centers, good samples are choosen adaptively, the average value is used as initial centers. Tests on some UCI data sets show that this algorithm has shorter time to cluster data, higher silhouette coefficient and higher accuracy.
关 键 词:聚类 K均值算法 初始聚类中心 个体轮廓系数 自适应
分 类 号:TP301.6[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222