Mathematical Infinity and Medium Logic (I) --Logical-mathematical Interpretation of Leibniz's Secant and Tangent Lines Problem in Medium Logic  被引量:1

Mathematical Infinity and Medium Logic (I) --Logical-mathematical Interpretation of Leibniz's Secant and Tangent Lines Problem in Medium Logic

在线阅读下载全文

作  者:ZHU Wu-jia GONG Ning-sheng DU Guo-pin 

机构地区:[1]School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China [2]State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China [3]School of Electronics and Information Engineering, Nanjing Uni- Versity of Technology, Nanjing 210009, China [4]Institute of Modern Logic and Applications, Nanjing University, Nanjing 210093, China

出  处:《Chinese Quarterly Journal of Mathematics》2013年第1期41-46,共6页数学季刊(英文版)

基  金:Supported by the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2011KF-04);Supported by the National High Technology Research and Development Program of China (863 Program)(2009AA043303)

摘  要:From the perspective of potential infinity (poi) and actual infinity, Ref [4] has confirmed that poi and aci are in 'unmediated opposition' (P,﹁P ) whether in ZFC or not; it has further been proved that the manners in which a variable infinitely approaches its limit also satisfy the law of intermediate exclusion. With these results as theoretical bases, this paper attempts to provide an accurate and strict logical-mathematical interpretation of the incompatibility of Leibniz's secant and tangent lines in the medium logic system from the perspective of logical mathematics.

关 键 词:CALCULUS limit theory medium logic potential infinitv: actual infinity 

分 类 号:O11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象