检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:ZHU Wu-jia GONG Ning-sheng DU Guo-pin
机构地区:[1]School of Information Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China [2]State Key Laboratory of Software Development Environment, Beihang University, Beijing 100191, China [3]School of Electronics and Information Engineering, Nanjing Uni- Versity of Technology, Nanjing 210009, China [4]Institute of Modern Logic and Applications, Nanjing University, Nanjing 210093, China
出 处:《Chinese Quarterly Journal of Mathematics》2013年第1期41-46,共6页数学季刊(英文版)
基 金:Supported by the Open Fund of the State Key Laboratory of Software Development Environment(SKLSDE-2011KF-04);Supported by the National High Technology Research and Development Program of China (863 Program)(2009AA043303)
摘 要:From the perspective of potential infinity (poi) and actual infinity, Ref [4] has confirmed that poi and aci are in 'unmediated opposition' (P,﹁P ) whether in ZFC or not; it has further been proved that the manners in which a variable infinitely approaches its limit also satisfy the law of intermediate exclusion. With these results as theoretical bases, this paper attempts to provide an accurate and strict logical-mathematical interpretation of the incompatibility of Leibniz's secant and tangent lines in the medium logic system from the perspective of logical mathematics.
关 键 词:CALCULUS limit theory medium logic potential infinitv: actual infinity
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31