检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]贵州师范学院数学与算计机科学学院,贵阳550018 [2]北京工业大学应用数理学院,北京100124
出 处:《应用概率统计》2013年第2期121-135,共15页Chinese Journal of Applied Probability and Statistics
基 金:2010年北京市教委科技面上项目(KM201010005006);贵州师范学院科研基金(12YB021)资助
摘 要:传统的广义Pareto分布(Generalized Pareto Distribution,简记GPD)的参数估计一般受分布形状参数的约束.如:矩估计(the Method of Moments,简记MOM),概率加权矩估计(the ProbabilityWeighted Moments,简记PWM),L矩估计(简记LM),极大似然估计(Maximum Likelihood Estima-tion,简记MLE)等.本文利用GDP可转化成指数分布的事实及指数分布参数估计的结果,利用最小二乘(the Least Squares,简记LS)法,得到了两参数和三参数GPD的参数估计;给出了估计量具有渐近正态性的结果.估计方法不受分布形状参数的限制.模拟显示:本文提出的估计在某些常用条件下优于GPD的其他参数估计,如MOM,PWM,LM,以及基于分位数估计(the Elemental PercentileMethod,简记EPM)等.Traditional estimations of parameters of the generalized Pareto distribution (GPD) are generally constrained by the shape parameter of GPD. Such as: the method-of-moments (MOM), the probabilityweighted moments (PWM), L-moments (LM), the maximum likelihood estimation (MLE) and so on. In this paper we use the fact that GPD can be transformed into the exponential distribution and use the results of parameters estimation for the exponential distribution, than we propose parameters estimators of the two-parameter or three-parameter GPD by the least squares method. Some asymptotic results are provided and the proposed method not constrained by the shape parameter of GPD. A simulation study is carried out to evaluate the performance of the proposed method and to compare them with other methods suggested in this paper. The simulation results indicate that the proposed method performs better than others in some common situation.
关 键 词:广义PARETO分布 矩估计 概率加权矩估计 最小二乘估计 L矩估计 基于分位数估计
分 类 号:O212.1[理学—概率论与数理统计]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.73