检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何芳[1] 王小川[1] 肖森予[1] 李晓丽[1]
出 处:《运筹与管理》2013年第2期229-234,共6页Operations Research and Management Science
基 金:国家自然科学基金资助项目(71073110);教育部基金资助项目(09YJA630113);上海规划与国土资源管理局项目(GTZ2010001)
摘 要:为了更准确更客观地识别房地产项目中的风险,为房地产项目投资决策提供科学依据和参考,有效地规避风险,本研究在BP神经网络(Back-Propagation Neural Network)建模的基础上,采取MIV(Mean Impact Value)算法对BP神经网络模型进行变量筛选的网络优化和改良,从而形成新的优化后的MIV-BP(Mean Impact ValueBack-Propagation Neural Network)神经网络,并以此用于评价房地产项目中的风险度以及各因素在风险度中的影响作用大小;同时选取目前相关的房地产项目数据进行仿真实证分析和验证。验证实验结果表明,MIV-BP型神经网络对于房地产项目风险度识别具有良好的适应性和准确性,实验结果客观,达到专家评价的要求,并在风险因素作用度分析上具有良好的应用价值。Real estate is a business of high risk. This paper establishes an optimized MIV-BP neural network (Mean Impact Value Back-Propagation Network)which is based on a successful Back-Propagation neural network to identify the risk of real estate projects and to analyze the influence of various factors in the risk of real estate projects, thus to provide some references about the risk recognition for the real estate projects investment deci- sions and to help the real estate companies to avoid the risk effectively. Some present data related real estate pro- jects are adopted to test the accuracy and objectivity of this model. The test results show the MIV-BP neural net- work model has an excellent compatibility and more accuracy when it is used in the risk recognition of real estate projects which can meet the experts' evaluation requirements and has a good application value in the analysis of risk factors in real estate projects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.84