饱和黄土应力-应变特性及K-G模型适用性研究  

Study on Stress-Strain and Fitness of K-G Model for Saturated Loess

在线阅读下载全文

作  者:赵丽娅[1] 崔彦平[1] 刘保健[1] 

机构地区:[1]长安大学公路学院,西安710064

出  处:《地下空间与工程学报》2013年第2期236-240,共5页Chinese Journal of Underground Space and Engineering

基  金:中央高校基本科研业务费专项资金项目(CHD2009JC117)

摘  要:对饱和重塑黄土进行了各向等压及等P应力路径试验,分析可知应力应变关系具有非线性,且不符合双曲线型。分别确定了成都科大修正K-G模型及考虑剪胀和应变软化的K-G模型的模量参数并进行了预测值与实测值的比较,结果显示,成都科大修正K-G模型能较好的预测等压固结试验的体积改变量,但不能完全反映软化和应力路径的影响,其仅在低应力比时是适用的;考虑应变软化的K-G模型能很好的反映饱和重塑黄土软化的特性。在预测体应变与剪应变时,在低应力水平时吻合度较高,在高应力水平时不能准确的反映剪胀的影响,更完善的K-G模型修正方法有待提出。Through a test of isotropic consolidation and under condition of mean stress P being constant for saturated and remodeling loess, the analysis result shows that the stress-strain relation is nonlinear, and this relation does not meet the hyperbolic model. It respectively determinates the modulus parameters for modified K-G model ( Chengdu University of Science and Technology ) and the K-G model with the consideration of the dilatancy and strain softening, and it also makes a comparison between the predicted value and the measured value, and the result shows that the modified K-G model ( Chengdu University of Science and Technology) can predict the variation of the volume in the experiment of isotropic consolidation well, and this model can not completely reflect the effect of softening and stress path, and this model only suits the situation with low stress ratio. The K-G model with a consideration of strain softening can reflect the softening character of saturated and remodeling loess well. Under the low stress levels, this model has a good coincidence degree when predict the volume strain and the shearing strain, while it can not reflect the effect of dilatancy precisely under the high stress level. The more perfect modification method of K-G model still needs to be done.

关 键 词:饱和黄土 应力应变 K-G模型 

分 类 号:U414[交通运输工程—道路与铁道工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象