检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:赵洁[1] 徐宗学[1] 刘星才[1] 牛翠娟[2]
机构地区:[1]北京师范大学水科学研究院,水沙科学教育部重点实验室,北京100875 [2]北京师范大学生物多样性与生态工程教育部重点实验室,北京100875
出 处:《中国环境科学》2013年第5期838-842,共5页China Environmental Science
基 金:国家水体污染控制与治理科技重大专项(2008ZX07526001)
摘 要:利用2009-2010年的地表水体理化监测数据,采用因子分析(PCA)和绝对主成分多元线性回归分析(APCS-MLR)方法,在分区基础上分析了辽河流域9种理化因子的空间分布和污染源特征.通过主成分分析,根据变量的因子载荷与采样点的因子得分,识别出了污染地表水体的天然和人为污染源信息;其中,I区87.11%污染来源于点源、有机物和营养物质,其次为土壤风化、侵蚀,Ⅲ区72.10%来源于农业面源的农业营养物质,其次为矿物质污染和生物化学影响,IV区77.83%的污染来源于点源有机物,其次为点源的营养物质.通过主成分多元线性回归分析,获得了每种水质指标对污染类型的贡献率,较好地估计了主要因子对水质的污染程度,可以为科学合理的河流水质管理提供技术支持.Principal component analysis (PCA) was applied to identify the number and characteristics of possible pollution sources, and the multivariate linear regression of the absolute principal component scores (APCS-MLR) was employed in the apportionment of the riverine pollution sources in the Liao River basin. Data of 9 water quality variables collected during the year 2009 and 2010 at 100 sampling sites were taken into consideration. Organic pollution, nutrient pollution, soil weathering were the potential pollution sources for region I, which explained 87.11% of the total variance; Nutrient pollution, mineral pollution, biochemical pollution were identified as potential pollution sources for Region Ill, with 72.10% of the total variance, and water in region IV were primarily influenced by organic pollution and nutrient pollution, with 77.83% of the total variance. This study illustrated the usefulness of multivariate statistical techniques for the identification of pollution sources, and is helpful for water quality management in the Liao River basin.
分 类 号:X522[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.91